1 9 DEC 2022

Question Paper Code

11480

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022

Reg. No.

Seventh Semester

Civil Engineering

CE8703 - STRUCTURAL DESIGN AND DRAWING

(Regulations 2017)

(Use of IS 456: 2000, SP 16, IS800:2007, SP 6, IS 875 (Part –III), IS 3370 and relevant IRC codes are permitted) Duration: 3 Hours Max. Marks: 100

PART - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions

		Marks,
		K-Level,CO
1.	List the loads considered for design of RC solid slab bridge.	2,K1,CO1
2.	Define characteristic strength of concrete.	2,K1,CO1
3.	Define backfill.	2,K1,CO2
4.	Distinguish between active earth pressure and passive earth pressure.	2,K1,CO2
5.	Under what circumstances, flat slab will be preferred?	2,K1,CO3
6.	List out the different types of flat slab.	2,K1,CO3
7.	What are the IS code books used in design of a RC bridge?	2,K1,CO4
8.	List out the types of RCC bridges.	2,K1,CO4
9.	Give the formula to calculate water pressure and earth pressure.	2,K1,CO5
10.	Write the minimum reinforcement criteria for tank walls.	2,K1,CO5

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) Design a cantilever retaining wall to retain an earth embankment with ^{13, K3,CO2} a horizontal top to suit the following data.

Height of soil above the ground level = 3.5 m.

Density of earth = 16 kN/m^3 , Angle of internal friction = 30° ,

SBC of soil = 200 kN/m^2 , Co-efficient of friction between soil and

concrete = 0.5. Adopt M 25 grade concrete and Fe 415 HYSD bars.

Determine (i) Dimensions of retaining wall

(ii) Stability calculations

OR

- b) Explain the design procedure of counter-fort retaining wall with 13, K3,CO2 necessary formulas.
- 12. a) Design an interior panel of a flat slab of size 5 m x 5 m. The live load 13, K3,CO3 on slab may be taken as 4 kN/m². Adopt M 20 grade concrete and Fe 415 HYSD bars.

OR

b) Explain the design procedure of RC Flat slab with necessary 13, K3, CO3 formulas.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 11480

13. a) Design the side walls of a rectangular RC water tank resting on 13, K3,C05 ground for a capacity of 80,000 liters. The inside dimensions of tank may be taken as 6 m x 4 m. Use M 30 grade concrete and Fe 415 HYSD bars.

OR

- b) Explain the design procedure of underground rectangular Water tank 13, K3,CO5 with necessary formulas.
- 14. a) Explain the step by step procedure involved in design of a RC solid 13, K3, CO4 slab bridge.

OR

13, K3,CO4

- b) Design a RC bridge for the following data. Clear span = 3.5 m, Loading = IRC class A, No. of Lanes = 1, Road width = 3.8 m, Safety kerbs = 60 cm wide, Wearing coat = 80mm. Use M20, Grade I steel.
- 15. a) Design a reinforced concrete circular tank with flexible base for ^{13, K3,(} capacity of 500000 liters. The depth of water is to be 4m, including a free board of 300mm.Overall height of the tank is restricted to 5m. Use M20 grade concrete and Fe415 grade steel.

OR

b) Explain briefly about the different types of retaining walls with neat ^{13, K3,CO1} sketches.

$PART - C (1 \times 15 = 15 Marks)$

16. a) A column ISHB 250 @ 54.7 kg/m in framed buildings supports ^{15, K3,CO6} spandrel beams both at top and bottom. The effective length of the column is 4 m about both the axes and subjected to following forces and moments.

(i) Maximum axial load = 1250 kN

(ii) Maximum bending moments at top and bottom of the column = 30 kNm. Classify the section and check its adequacy for local capacity.

OR

- b) Design an I-section purlin, for an industrial building situated in the 15, K3,CO6 outskirts of New Delhi, to support a galvanized iron sheet roof for the following data:
 - (i) Spacing of the truss C/C = 6 m

(ii) Span of truss = 12 m

(iii)Slope of truss = 30°

(iv)Spacing of purlins C/C = 1.5 m

- (v) Intensity of wind pressure = 2000 N/m^2
- (vi)Weight of galvanized sheets = 130 N/m^2

(vii)Grade of steel = Fe 410

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 11480 2