Reg. No.						
		 				 L

Question Paper Code

11505

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022

Sixth Semester

Civil Engineering

CE8601 - DESIGN OF STEEL STRUCTURAL ELEMENTS

(Usage of IS 800 and Steel Tables are permitted)

(Regulations 2017)

Duration: 3 Hours

Max. Marks: 100

PART-A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions

1.	What is a partial safety factor?	, Marks, K-Level, CO 2,K1,CO1
2.	What are the various types of structural steel section?	2,K1,CO1
3.	Define staggered pitch.	2,K1,CO3
4.	Distinguish between gauge distance and pitch of the bolt.	2,K2,CO3
5.	Define slenderness ratio.	2,K1,CO4
6.	What is net sectional area?	2,K2,CO4
7.	Define single lacing and double lacing.	2,K1,CO5
8.	What is the purpose of gusset plate?	2,K2,CO5
9.	Define laterally restrained beams.	2,K1,CO6
10.	What do you mean by castellated beam?	2,K2,CO6

PART - B (5 × 13 = 65 Marks)

Answer ALL Questions

11.	a)	Explain about types of loads on structures and load combinations.	13,K2,CO1
		OR	
	b)	Explain in detail about the structural systems in steel.	13,K2,CO1

- 12. a) A single-bolted double-cover butt joint is used to connect two plates of 13,K3,CO3
 8 mm thickness. Assuming 20 mm bolts at a pitch of 50 mm, Calculate the efficiency of the joint. The thickness of cover plate is 4 mm.
 OR
 - b) An angle section ISA 80mmX50mmX8mm is welded to a 12mm thick ^{13,K3,CO3} gusset plate at site. Design the weld to transmit the load equal to the strength of the members. Grade of steel Fe 410.

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create 11505

A tension member consists of two angle sections and carries a load of 13,K3,CO4 13. a) 210 kN. Design the member when both the angles are connected on the same side of the gusset plate.

OR

- b) Design a tension member carrying a load 600 kN. The length of the 13,K3,CO4 member is 2.5m. The member is connected to 12mm thick gusset plate 20mm bolts.
- Design a built-up column with single angle lacing system to carry a ^{13,K3,CO5} 14. a) load of 400 kN. The length of the column is 6 m. It is restrained in rotation but not in direction at both the ends

OR

b) Design a column with double lacing system to carry a factored axial 13,K3,CO5 load of 1800 kN. The effective height of column is 4.5m. Use two channels placed back to back.

15. Design an angle purlin for a roof with the following data. a) Span of truss : 8m Spacing of truss : 4m c/cPitch of truss : 1/4 Spacing of purlins along the slope truss: 2m c/c Roof coverings : Asbestos sheets Basic wind pressure : 1.5 kN/sq.m

OR

b) Find the suitable design for a simply supported steel joist with a 4 m ^{13,K3,CO6} effective span carries anudl of 40kN/m over its span inclusive of self weight. The beam is laterally unsupported. Take $fy = 250 N/mm^2$.

PART - C $(1 \times 15 = 15 \text{ Marks})$

Explain about i) Working stress Method ii) Limit state Method in 15,K2,CO2 16. a) design of steel elements.

OR

Explain the concept of allowable stress design of angle, tension and 15,K2,CO2 b) compression members

2

13,K3,CO6