
B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022

Sixth Semester
Civil Engineering CE8602 - STRUCTURAL ANALYSIS II
(Regulations 2017)
Duration: 3 Hours
Max. Marks: 100

$$
\text { PART - A }(10 \times 2=20 \text { Marks })
$$

Answer ALL Questions

11. a) Two point loads of 18 kN and 36 kN spaced 1.5 m apart cross a girder $13, \mathrm{~K} 3, \mathrm{COI}$ of span 4.5 m from left to right with the 18 kN leading. Draw the ILD for shear force and bending moment and find the values of maximum shear force and bending moment at a section 2 m from the left hand support. Also evaluate the absolute maximum bending moment due to the given loading system.

OR

b) A simply supported beam has a span of 15 m and subjected to an UDL $13, \mathrm{K3}, \mathrm{CO} 1$ of $30 \mathrm{kN} / \mathrm{m}, 5 \mathrm{~m}$ long travelling from left to right. Draw the ILD for shear force and bending moment at a section 6 m from the left end. Use these diagrams for calculating the maximum BM and SF at this section.
12. a) Draw the influence line for R_{B} of the continuous beam ABC simply ${ }^{13, K 3, C O 3}$ supported at $A \& C$ using Muller Breslau's principle. $A B=4 \mathrm{~m}, \mathrm{BC}=$ 3 m . EI is constant.

OR

b) Draw the influence line diagram for the propped reaction of a propped $13, \mathrm{~K}, \mathrm{CO} 3$ cantilever beam having span 4.5 m . Take $\mathrm{EI}=$ constant
13. a) A symmetrical three hinged circular arch has a span of 13 m and a rise to the central hinge of 3 m . it carries a vertical load of 15 kN at 3 m from the left hand end. Find
i. The reactions at the supports,
ii. Magnitude of the thrust at the springing,
iii. Bending moment at 5 m from the left hand hinge and the maximum positive and negative bending moment.

OR

b) A three hinged parabolic arch of span 25 m and rise 5 m carries an udl of $38 \mathrm{kN} / \mathrm{m}$ covering a distance of 10 m from left end. Find the horizontal thrust, the reactions at the hinges and the maximum negative moment.
14. a) A suspension bridge is of 160 m span. The cable of the bridge has a dip of 12 m . the cable is stiffened by a three hinged girder with hinges at either end and at centre. The dead load of the girder is $15 \mathrm{kN} / \mathrm{m}$. find the greatest positive and negative bending moments in the girder when a single concentrated load of 340 kN passes through it. Also find the maximum tension in the cable.

OR

b) A suspension bridge of 300 m span has two nos. of three hinged stiffening girders supported by cables with a central dip of 30 m . if 4 point loads of 400 kN each are placed at the centre line of the roadway at $10,30,50$ and 70 m from left hand hinge. Find the shear force and bending moment in each girder at 75 m from each end. Calculate also the maximum tension in the cable.
15. a) Determine the shape factor of a T-section beam of flange dimension 13,K3,CO6 $100 \times 12 \mathrm{~mm}$ and web dimension $138 \times 12 \mathrm{~mm}$ thick.
OR
b) Analyse a propped cantilever of length ' L ' and subjected to udl of w/m 13,K3,CO6 length for the entire span and find the collapse load.

$$
\text { PART - C }(1 \times 15=15 \text { Marks })
$$

16. a) Draw the ILD for the forces in members $\mathrm{U}_{3} \mathrm{~L}_{3}$ and $\mathrm{U}_{3} \mathrm{~L}_{4}$ of the truss ${ }^{15, K 3, C O 2}$ shown in fig. below

OR
b) A train of 5 wheel loads crosses a simply supported beam of span $22.5^{15, \mathrm{~K}, \mathrm{CO}}$ m . Using influence lines calculate the maximum positive and negative shear forces at mid span. " And absolute maximum bending moment anywhere in the span.

