

$PART - B (5 \times 13 = 65 Marks)$

Answer ALL Questions

- 11. a) Consider the system $\dot{x} = \begin{bmatrix} 0 & 0 & -2 \\ 0 & 1 & 0 \\ 1 & 0 & 3 \end{bmatrix} x; \quad x(0) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$ Evaluate the solution of the state equation.
 - OR
 - b) Is the following system completely state controllable and completely ^{13,K3,CO1} observable?

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} x$$
$$y = \begin{bmatrix} 20 & 9 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 11519

12.	a)	Design full-order state observer.	13,K3,CO2
OR			
	b)	Explain state feedback with integral Control.	13,K2,CO2
13.	a)	Explain in detail the sampled data control system.	13,K2,CO3
OR			
	b)	Discuss in detail the stability analysis and compensation techniques in Z-transform.	13,K2,CO3
14.	a)	Discuss the stability of a system by describing function method.	13,K2,CO4
OR			
	b)	Describe the phase plane method.	13,K2,CO4
15.	a)	Design a state regulator through the Lyapunov function.	13,K2,CO5
OR -			
	b)	Design an optimal state regulator through the matrix Riccati equation.	13,K2,CO5

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Construct State model for the following linear system. 15,K3,COI

OR

b) Obtain the response y(t) of the following system $\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} = \begin{bmatrix}
-1 & -0.5 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} + \begin{bmatrix}
0.5 \\
0
\end{bmatrix} u, \begin{bmatrix}
x_1(0) \\
x_2(0)
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix}$ $y = \begin{bmatrix}
1 & 0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}$ where u(t) is the unit-step input occurring at t=0.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 11519 2