28 DEC Luce

Reg. No.
Question Paper Code 11519

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022
 Sixth Semester
 Instrumentation and Control Engineering IC8651 - ADVANCED CONTROL SYSTEM

(Regulations 2017)
Duration: 3 Hours
Max. Marks: 100

Answer ALL Questions

PART - A ($\mathbf{1 0 \times 2} \mathbf{2}=\mathbf{2 0}$ Marks)

1. How state space approach is best suited for designing controllers?
2. Define diagonalization.

Marks, K-Level, CO 2,Kl,COI
3. What is the necessary and sufficient condition for arbitrary pole placement?
4. Mention about pole placement methods.

2,K1,CO2
5. Define Sampler.
6. Write the transfer function of Zero Order Hold.

2,K1,CO3
7. Mention common physical nonlinearities.

2,K1,CO4
8. Define singular point in nonlinear system.
9. What is quadratic performance index?
10. Compare parameter optimization and optimal control problems.

```
PART - B (5 < 13 = 65 Marks)
    Answer ALL Questions
```

11. a) Consider the system equation.

OR

b) Is the following system completely state controllable and completely $13, \mathrm{K3}, \mathrm{CO} 1$ observable?

$$
\begin{gathered}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-6 & -11 & -6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u} \\
y=\left[\begin{array}{lll}
20 & 9 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
\end{gathered}
$$

12. a) Design full-order state observer.

13, K3,CO2

OR

b) Explain state feedback with integral Control.

13,K2,CO2
13. a) Explain in detail the sampled data control system.

13, K2,CO3

OR

b) Discuss in detail the stability analysis and compensation techniques in 13,K2,CO3 Z-transform.
14. a) Discuss the stability of a system by describing function method.

13,K2,CO4
b) Describe the phase plane method.
15. a) Design a state regulator through the Lyapunov function.

13,K2,CO5
OR
b) Design an optimal state regulator through the matrix Riccati equation.

$$
\text { PART - C }(1 \times 15=15 \text { Marks })
$$

16. a) Construct State model for the following linear system.

OR
b) Obtain the response $y(t)$ of the following system

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-1 & -0.5 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
0.5 \\
0
\end{array}\right] u,\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$y=\left[\begin{array}{ll}1 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ where $u(t)$ is the unit-step input occurring at $\mathrm{t}=0$.

