Reg.	No.					
ode	11529					

Question Paper C

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022

Sixth Semester

Computer Science and Engineering CS8602 - COMPILER DESIGN

(Regulations 2017)

Duration: 3 Hours

Max. Marks: 100

PART - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions

1.	Write about the Frontend Backend model of a compiler.	Marks, K-Level, CO 2,K2,CO1
2.	Distinguish between compiler and Interpreter.	2,K2,CO1
3.	Define tokens, patterns and lexemes.	2,K1,CO2
4.	Mention the issues in lexical analyzer.	2,K2,CO2
5.	List the differences between Top down and Bottom up parser.	2,K2,CO3
6.	Draw syntax tree for the expression $a=b^*-c+b^*-c$.	2,K2,CO3
7.	Write the properties of intermediate language.	2,K2,CO4
8.	Define three address codes.	2,K1,CO4
9.	Define Basic Block and Flow graph.	2,K1,CO5
10.		2,K2,CO5

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11.	a)	Describe the various phases of compiler and trace it with the program segment (position: = initial + rate * 60).	13,K2,CO1

OR

b)	(i) List the cousins of a Compiler. Explain them in detail.	7,K2,CO1
	(ii) Explain the need for grouping of phases of the compiler.	6,K2,CO1

12.	a)	(i) Discuss input buffering techniques in detail.	7,K2,CO2
		(ii) Draw the transition diagram for relational operators and unsigned numbers.	6,K2,CO2

OR

b) Explain with examples how different tokens are specified and 13,K2,CO2 recognized during a compilation process.

(i) Give the predictive parser table for the following grammar. 13. 8, K2, CO3 $S \rightarrow (L) \mid a \quad L \rightarrow L, S \mid S$ (ii) Parse the string (a, (a, a)).

OR

- 13,K2,CO3 Define a shift-reduce parser. Explain in detail the conflicts that may occur during shift reduce parsing with suitable example.
- Illustrate in detail about the various forms of three address instruction 13,K3,CO4 14. with suitable examples.

- Explain in detail about the specification of a simple type checker. 13,K2,CO4
- Explain in detail about the various issues in code generation phase of a 13,K2,CO5 15. a) compiler with examples.

OR

b) (i) Explain the storage organization memory in the perspective of a compiler writer with a neat diagram. (ii) Compare static versus dynamic memory allocation. 5, K2, CO5

PART - C $(1 \times 15 = 15 \text{ Marks})$

Explain and apply the principal sources of optimization techniques for 16. 15,K2,CO6 the given three address codes and write the optimized code.

(1)	i	:=	m-1	(16)	t ₇ := 4*i
(2)	j	:=	n	(17)	tg := 4*j
(3)	tı	; =	4*n	(18)	t ₉ := a[t ₈]
(4)	V	;=	a[t _i]	(19)	a[t ₁] := t ₉
(5)	i	:=	i+1 ·	(20)	t ₁₀ := 4*j
(6)	t ₂	:=	4*i	(21)	a[t ₁₀] := x
(7)	t ₃	:=	a[t ₂]	(22)	goto (5)
(8)	if	t3	< v goto (5)	(23)	t ₁₁ := 4*i
(9)	j	: =	j-1	(24)	$\mathbf{x} := \mathbf{a}[t_{ii}]$
(10)	t ₄	:=	4+j	(25)	t ₁₂ := 4*i
(11)	t ₅	:=	a[t4]	(26)	t ₁₃ := 4*n'.
			> v goto (9)	(27)	t ₁₄ := a[t ₁₃]
		i	>= j goto (23)	(28)	a[t ₁₂] := t ₁₄
(14)			4*1	(29)	t ₁₅ := 4*n
(15)	x	:=	a[t ₆]	(30)	a[t ₁₅] := x

OR

b) Write about Data Flow Analysis and Control Flow Analysis of 15,K2,C06 structural programs.

11529

5,K2,CO3