Reg. No.

Question Paper Code 11534

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022

Sixth Semester
Mechanical Engineering
ME8692 - FINITE ELEMENT ANALYSIS
(Regulations 2017)
Max. Marks: 100
Duration: 3 Hours

PART - A ($10 \times 2=20$ Marks)
 Answer ALL Questions

1. List the various weighted residual methods.
2. What do you mean by constitutive law?
Marks,

K-Level, CO
$2, \mathrm{Kl}, \mathrm{COI}$

$2, \mathrm{Kl}, \mathrm{COI}$
$2, \mathrm{~K} 2, \mathrm{CO} 2$
$2, \mathrm{~K} 2, \mathrm{CO} 2$
$2, \mathrm{~K} 2, \mathrm{CO} 3$
$2, \mathrm{~K} 2, \mathrm{CO} 3$
$2, \mathrm{~K} 3, \mathrm{CO} 4$
$2, \mathrm{~K} 2, \mathrm{CO} 4$
$2, \mathrm{Kl}, \mathrm{CO} 6$
$2, \mathrm{KI}, \mathrm{CO} 6$

$$
\text { PART - B }(5 \times 13=65 \text { Marks })
$$

Answer ALL Questions

11. a) Estimate the differential equation for a physical problem expressed as $\mathrm{d} 2 \mathrm{y} / \mathrm{dx} 2+50=0,0 \leq \mathrm{x} \leq 10$ with boundary conditions as $\mathrm{y}(0)=0$ and $y(10)=0$ using the trial function $y=a 1 x(10-x)$ and find the value of the parameters al by the following methods listed below.(i) Point collocation method (ii) Sub domain collocation method (iii) Least squares method and (iv) Galerkin method.

OR
b) Estimate the Eigen value and Eigen function of $y^{\prime \prime}-4 \lambda y^{\prime}+4 \lambda^{2} y=0$; with the boundary conditions are $y^{\prime}(1)=0, y(2)=2$.
12. a) Estimate the first two natural frequencies of longitudinal vibration of the stepped steel bar shown in fig. and plot the mode shapes. All the dimensions are in mm Take $\mathrm{E}=200 \mathrm{GPa}$. And $\rho=0.78 \mathrm{~kg} / \mathrm{cc} . \mathrm{A}=4 \mathrm{~cm}^{2}$, length $l=500 \mathrm{~mm}$.

OR
b) A metallic fin 20 mm wide and 4 mm thick is attached to a furnace whose wall temperature is $180^{\circ} \mathrm{C}$. The length of the fin is 120 mm . if the thermal conductivity of the material of the fin is $350 \mathrm{~W} / \mathrm{m}{ }^{\circ} \mathrm{C}$ and convection coefficient is $9 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$, Estimate the temperature distribution assuming that the tip of the fin is open to the atmosphere and that the ambienttemperatureis $25^{\circ} \mathrm{C}$.
13. a) For the triangular element shown in the figure determine the straindisplacement matrix [B] and constitutive matrix [D]. Assume plane stress conditions. Take $\mu=0.3, \mathrm{E}=30 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ and thickness $\mathrm{t}=0.1$ m . And also calculate the element stiffness matrix for the triangular element.

OR
b) The figure below shows a shaft having rectangular cross section with $8 \mathrm{~cm} \times 4 \mathrm{~cm}$ sides. The material has shear modulus of $80 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. Shaft length is 100 cm . The shaft is fixed at one end and subjected to torque T at the other end. Determine the total angle of twist, if the applied torque is $10 \times 10^{3} \mathrm{~N}-\mathrm{cm}$.

14. a) Develop Strain-Displacement matrix for axisymmetric triangular 13, K3, CO4 element

OR

b) Calculate the global stiffness matrix for the plate shown in fig. Taking
$13, \mathrm{~K} 3, \mathrm{CO} 4$ two triangular elements. Assume plane stress conditions.

15. a) For a four noded rectangular element shown in fig. Calculate the $13, K 3, \operatorname{COS}$ following (a)Jacobian matrix (b)Strain-Displacement matrix (c)Element strain and (d) Element stress

OR
b) Calculate the Cartesian coordinates of the point P which has local coordinates $\varepsilon=0.8$ and $\eta=0.6$ as shown in figure

PART - C ($\mathbf{1} \times 15=15$ Marks $)$

16. a) Develop the step by step procedure of solving FEA.

OR

b) A long hollow cylinder of inside diameter 100 mm and outside diameter 120 mm is firmly fitted in a hole of another rigid cylinder over its full length as shown in fig. The cylinder is then subjected to an internal pressure of 2 MPa . By using two elements on the 10 mm length as shown, Calculate the displacements at the inner radius take $\mathrm{E}=210 \mathrm{GPa} . \mu=0.3$

