Question Paper Code

11537

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022

Reg. No.

Fifth Semester

Artificial Intelligence and Data Science

20AIPC501 - COMPUTER VISION

(Regulations 2020)

Duration: 3 Hours

Max. Marks: 100

Marks

PART - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions

1.	Define Computer Vision.	K-Level, CO 2,K1,CO1
2.	What is meant by Mathematical morphology?	2,K1,CO1
3.	Differentiate between Euclidean Affine and Projective.	2,K2.,CO2
4.	List some properties of Fourier transforms.	2,K1,CO2
5.	What is Hough transform?	2,K1,CO3
6.	State any two differences between Gaussian derivative filters and Gabor Filters	2,K2,CO3
7.	Categorize the Region Growing Segmentation Technique.	2,K1.CO4
8.	What is Parametric motion? How it is different (any one reason) from spline-based motion?	2,K1,CO4
9.	Define K-Means and K-Medoids.	2,K1,CO5
10.	List two Supervised classifiers with definition.	2,K1,CO5
	PART - B (5 × 13 = 65 Marks) Answer ALL Questions	
- Ander		13 KLCO1

1	1. a) Explain	in detail about Image Formation and Sensing.	15,11,001
	b) Explain	OR in detail about Binary Image Processing.	13,K1,CO1
12	2. a	(i) Ortho	explain about the following transformation ogonal idean Affine	13,K1,CO2
			OR	13,K1,CO2

b) Briefly explain about Convolution and Filtering.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 11537 1

		OR				
	b)	Explain in detail about Corner based detectors: (i) Harris	13,K1,CO3			
		(ii) Hessian Affine				
•	a)	What is the objective of image segmentation? Explain any one of the region-based image segmentation technique in detail. Mention two applications of image segmentation. OR	13,K2,CO4			
	b)	What is Spline based motion. Explain in detail about spline-based motion with Medical Image Registration.	13,K2,CO4			
•	a)	With an application do comparative analysis between K-Means, K-Medoids, Mixture of Gaussians clustering technique. OR	13,K2,CO5			
	b)	With an application do comparative analysis between Bayes, KNN and ANN classifier.	13,K2,CO5			
PART - C (1 × 15 = 15 Marks)						

a) Describe the idea behind performing Histogram equalization.

Discuss the classifiers KNN and Bayes models in detail. 16. a)

OR

15,K3,CO6

15,K2,CO6

13,K1,CO3

Compare PCA, ICA, LDA in detail. b)

13.

14.

15.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

11537