Reg	. No.	
Question Paper Code	11600	

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022

Fifth Semester

Production Engineering

20PRPC504 - DESIGN OF JIGS, FIXTURES AND PRESS TOOLS

(Regulations 2020)

(Use of approved Design Data Book is permitted)

Duration: 3 Hours

Max. Marks: 100

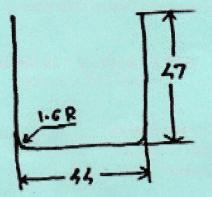
PART - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions

		Marks,
		K-Level, CO
1.	What is meant by redundant location?	2,K1,CO1
2.	Name the different types of clamps.	2,K1,CO1
3.	What are assembly fixtures?	2,K1,CO3
4.	What are mandrels?	2,K1,CO3
5.	Name any four components of a simple press? Mention the broad	2,K2,CO4
	classification of press operations.	
6.	What is meant by clearance? Why is it important in shearing operations?	2,K2,CO4
7.	Define center of pressure. How will you calculate irregular work parts?	2,K2,CO5
8.	List out the main parts of a power press.	2,K1,CO5
9.	What is SMED?	2,K1,CO6
10.	Write the components of a CNC machine	2,K1,CO6

PART - B $(5 \times 13 = 65 \text{ Marks})$

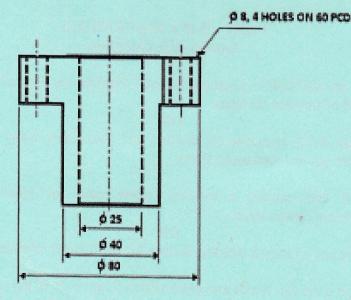
Answer ALL Questions

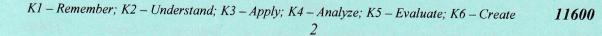

11.	a)	What are the various location devices? Explain any four of them with the aid of suitable sketches.	13,K2,CO1			
	b)	OR Explain 3-2-1 principle of location and show how many degrees of freedom are arrested using them.	13,K2,CO1			
12.	a)	Sketch and explain a turning fixture used for machining non- cylindrical components.	13,K2,CO3			
	OR					
	b)	Sketch and explain a welding fixture for door frame fabrication.	13,K2,CO3			
13.	a)	Design a die for 20x20 mm plate with a 5 mm hole in the center. Stock thickness is 0.5 mm and the material is mild steel. Take $f_s=120 \text{ N/mm}^2$. OR	13,K3,CO4			
VI	Dame	ambar, K2 Understand; K3 Apply: K4 - Analyze: K5 - Evaluate: K6 - Create	11600			

1

- b) Design a die for a 50 mm washer with a 10 mm hole in the center. 13,K3,CO4 Thickness of the washer is 0.8 mm and the material is mild steel.
- 14. a) Explain the variables affecting the metal flow in drawing operations.

OR

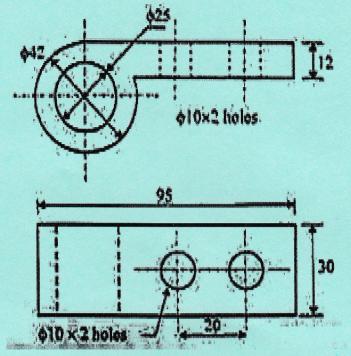

b) Design a drawing tool for the component shown in Fig. Considering ^{13,K3,CO5} the following assumptions, the material of the sheet is mild steel, 0.8mm thickness and ultimate tensile strength 42kg/mm². Determine the following a) Blank size b) Draw ratio c) No. of draws d) Percentage of reduction e) Die and punch radius f) Die clearance.



- 15. a) Explain the setup reduction for work holding in detail. 13,K2,CO6 OR
 - b) Briefly explain the concept of poka yoke.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Design and draw a drill jig which can be used to drill holes on the 15,K3,CO2 flange coupling.



13,K2,CO6

13,K2,CO5

OR b) Design a leaf jig for drilling two holes of 10 mm diameter on the given 15,K3,CO2 work piece.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 3

11600