

PART - B $(5 \times 13 = 65 \text{ Marks})$ Answer ALL Questions

11. a) Find the transfer function of $H_2(s)/Q_i(s)$ for the liquid level system ^{13,K2,CO1} shown.

OR

b) Obtain the mathematical model of a Continuous Stirred Tank Reactor ^{13,K2,CO1} (CSTR) with neat sketch and necessary equations.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 11616

12. a) Compare the working of different types of control valves with their ^{13,K2,CO2} inherent and installed characteristics.

OR

- b) How control valve sizing is done for a flow process application and ^{13,K2,CO2} explain the factors involved in selection of a control valve.
- 13. a) Explain the characteristics of an on-off controller with neat diagrams. ^{13,K2,CO3}

OR

 b) Draw the plot of PID controller output for the following error pattern. ^{13,K2,CO3} Kp=2; integral time=1 second and derivative time=0.5 second. P(0)=5%

14. a) (i) Discuss the procedure for optimizing controller parameters using ^{7,K2,CO4} time response methods.

(ii) Illustrate about the tuning of a PID controller based on Cohen Coon 6,K2,CO4 Process reaction curve method with necessary formulations.

OR

b) (i) Explain the damping oscillation method for tuning classical PID ^{7,K2,CO4} controller.

(ii) With neat diagram explain the cascade control scheme with an 6,K2,CO4 example.

15. a) Explain the steps involved in designing a IMC-PID Control scheme for ^{13,K2,CO5} a first order and second order process.

OR

b) Explain with block diagram the implementation of multi loop control 13,K2,CO5 schemes for a Heat Exchanger process.

$PART - C (1 \times 15 = 15 Marks)$

16. a) (i) Determine the parameters of PID controller for the open loop ^{8,K3,CO4} transfer function of a unity feedback system $G(s)H(s) = \frac{K}{1 - \frac{1}{2}}$ using Zieglar Nichols method.

$$S(S^2 + 6s + 9)$$

(ii) Explain how Split Range control scheme is adopted for a process 7,K2,C05 application.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 11616

b) (i) Determine the parameters of PID controller for the open loop 8,K3,CO4 transfer function of a unity feedback system $G(s)H(s) = \frac{K}{S(S+50)}$ using Cohen Coon method.

(ii) Explain with necessary diagrams, the working of Smith predictor 7,K2,C05 control scheme.

3