Reg. No.

Question Paper Code	11621

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022

Fifth Semester
Mechanical Engineering
20MEEL514 - PROCESS PLANNING AND COST ESTIMATION
(Regulations 2020)

> PART - A $(10 \times 2=20$ Marks $)$
> Answer ALL Questions

PART - B ($5 \times 13=65$ Marks)

Answer ALL Questions
11. a) Describe in detail the various process planning activities.

13, K2,COI

OR

b) Illustrate the components of retrieval type CAPP system with a block 13,K2,COI diagram.
12. a) Estimate the types of basic quality strategies with an example.
$13, \mathrm{~K} 2, \mathrm{CO} 2$

OR

b) Extend the types of jigs and fixtures with neat diagram and the $13, \mathrm{~K} 2, \mathrm{CO} 2$ clamping effectiveness.
13. a) Discuss in detail about various elements involved in costing.
$13, \mathrm{~K} 2, \mathrm{CO} 3$

OR

b) A company has purchased a bus for its officers for Rs. $10,00,000$. The expected life of the bus is eight years. The salvage value of the bus at the end of its life is Rs. $1,50,000$. Find the following using the sinking fund method of depreciation ($\mathrm{i}=10 \%$):
(i) Depreciation at the end of the third and fifth year.
(ii) Book value at the end of the second year and sixth year.
14. a) 500 shafts as shown in figure are to be drop forged from a bar stock of $13, \mathrm{~K} 2, \mathrm{CO} 4$ diameter 30 mm . calculate the selling price by assuming,
(i) Material Cost Rs. $125 / \mathrm{m}$.
(ii) Forging Cost Rs. $0.025 / \mathrm{cm}^{2}$ of surface area to be forged.
(iii) Overhead Charges 50% of material cost.
(iv) Profit is $=25 \%$ of total cost.

b) Find the selling price of CI pulley as shown in figure. Its surfaces are to be machined after casting. The pattern is supplied by the customer. The pattern which costs Rs. 5000 can produce 1000 units before being scraped. The following data can be used,
(i) Density of the material is $8 \mathrm{~g} / \mathrm{cc}$.
(ii) Cost of molten metal at cupola spout is Rs $30 / \mathrm{kg}$.
(iii) Process scrap is 20% of net weight.
(iv) Scrap return value is Rs. $7 / \mathrm{kg}$.
(v) Administrative overhead is Rs. 20/hour.
(vi) Sales overhead is 20% of factory cost.
(vii) Profit is 20% of factory cost.
(viii) Other expenditure

Operation Mouldiag \& Pouring	Time (min)	Labor Cost $/$ hour	Shop Owchcad / Hour
Shot Blasting	5	Rs. 40	Rs. 35
Fettliag	6	Rs. 35	Rs. 30

15. a) Calculate the machining time to drill four 8 mm dia holes and one 40 mm dia central hole in the flange shown in Fig. 20 mm dia hole is drilled first and then enlarged to 40 mm full hole. Take cutting speed $10 \mathrm{~m} / \mathrm{min}$, feed for 8 mm , drill $0.1 \mathrm{~mm} / \mathrm{rev}$, for 20 mm and drill feed is $0.2 \mathrm{~mm} / \mathrm{rev}$ for 40 mm drill feed is $0.4 \mathrm{~mm} / \mathrm{rev}$.

b) Find the machining time to complete the job as shown in the figure from a basic raw material of 60 mm and length 150 mm . For Turning: Cutting Speed $=25 \mathrm{~m} / \mathrm{min}$, feed rate $=1 \mathrm{~mm} / \mathrm{rev}$, Depth of cut $=2$ mm . For Thread Cutting: Cutting Speed $=10 \mathrm{~m} / \mathrm{min}$, For Drilling: Cutting Speed $=25 \mathrm{~m} / \mathrm{min}$, feed rate $=0.2 \mathrm{~mm} / \mathrm{rev}$.

$$
\text { PART - C }(1 \times 15=15 \text { Marks })
$$

16. a) Estimate time required on a shaper to machine a plate $1100 \times 500 \mathrm{~mm}$, if the cutting speed is $16 \mathrm{~m} / \mathrm{min}$. the ratio of return stroke time to cutting stroke time is $2: 3$. The clearance at each is 20 mm long and 165 mm wide. Two cuts are required one rough cut with feed 2 mm per stroke and finish cut with 1.25 mm feed per stroke.

OR

b) Estimate the planning time for a C.I of 1.25 m long and 0.5 m wide which is to be machined on a planner having cutting speed of 12 $\mathrm{m} / \mathrm{min}$ return speed of $30 \mathrm{~m} / \mathrm{min}$. Two cuts are required one rough cut with depth of 3.125 mm and feed of $0.1 \mathrm{~mm} / \mathrm{rev}$ other with finish cut of 0.125 mm of depth and feed of $0.125 \mathrm{~mm} / \mathrm{rev}$.

