Reg. No.

Question Paper Code 11625

M.E. - DEGREE EXAMINATIONS, NOV/DEC 2022
 Third Semester
 M.E. - Communication Systems
 20PCOEL308 - SOFT COMPUTING TECHNIQUES

(Regulations 2020)
Duration: 3 Hours
Max. Marks: 100
PART - A ($\mathbf{1 0} \times 2=20$ Marks $)$
Answer ALL Questions

1.	What is supervised learning? Mention its techniques.	Marks, K-Level, CO 2,Kl,CO1
2.	List the characteristics of soft computing.	2,K1,CO1
3.	State the advantages of genetic algorithms.	2,K1,CO2
4.	Compute the crossover output of two individuals $\mathrm{x} 1=\left[\begin{array}{llllll}6 & 5 & 4 & 1 & 3 & 5\end{array} \mathrm{l}^{2}\right.$ 2 $]$ and 	2,K1,CO2
5.	Differentiate between genetic algorithm and genetic programming.	2,K1,CO3
6.	What is feature selection?	2,K1,CO3
7.	What is a neural network?	2,K1,CO4
8.	State the activation functions used in back propagation MLPs and its formula.	2,K1,CO4
9.	Enumerate the if-then rules for a first-order Sugeno fuzzy model.	2,K1,CO6
	Define: Decision tree.	2,K1,CO6

PART - B ($5 \times 13=65$ Marks)
 Answer ALL Questions

11. a) Explain the basics of machine learning and its applications in detail.
$13, \mathrm{~K} 2, \mathrm{CO} 1$

OR

b) Write short notes on the following:
(i) Evolutionary computing
5, K2,COI
(ii) Fuzzy set theory 4, K2, COI
(iii) Neural networks
12. a) Explain the basic concepts and working principle of genetic algorithms 13,K2,CO2 with relevant diagrams.

OR

b) Explain the GA cycle with relevant diagrams and a flow chart.

13, K2,CO2
13. a) Elaborate the process to design texture filters with the help of genetic $13, \mathrm{~K} 2, \mathrm{CO} 3$ algorithms.

OR

b) Describe the process of designing a knowledge acquisition system in image processing applications using machine learning.
14. a) Discuss back propagation for feed-forward networks in detail.

OR

b) What are adaptive resonance networks? Explain ART1 in detail.
15. a) Explain the ANFIS architecture with a neat diagram for Tsukamoto

13,K2,CO6 model in detail.

OR

b) Explain how the CART algorithm is used for structure identification in

13,K2,CO6 ANFIS in detail.

$$
\text { PART - C }(1 \times 15=15 \text { Marks })
$$

16. a) Consider two fuzzy sets:
$\mathrm{A}=\{0.2 / 1+0.3 / 2+0.4 / 5+0.5 / 4\}$
$B=\{1 / 1+0.2 / 2+0.2 / 3+1 / 4\}$.
Compute the algebraic sum, algebraic product, bounded sum, and bounded difference of the given fuzzy sets.

OR
b) (i) Explain Fuzzy max-min composition and Fuzzy max-product

8,K2,CO5 composition in detail.
(ii) Discuss the classical equivalence relation and fuzzy equivalence $7, K 2, \operatorname{CO5}$ relation in detail.

