		Reg. No.	
		Question Paper Code 11625	
		M.E DEGREE EXAMINATIONS, NOV/DEC 2022	
	lA a	2013 Third Semester	
ļ	stri.	M.E Communication Systems	
Ì		20PCOEL308 - SOFT COMPUTING TECHNIQUES	
F		(Regulations 2020)	
L	Jura	tion: 3 Hours Max. Mar	ks: 100
		$PART - A (10 \times 2 = 20 Marks)$	
		Answer ALL Questions	
		and a state of the second second and the second	Marks, K-Level CO
1.		What is supervised learning? Mention its techniques.	2,K1,CO1
2.		List the characteristics of soft computing.	2,K1,CO1
3.		State the advantages of genetic algorithms.	2,K1,CO2
4.		Compute the crossover output of two individuals $x1 = [65413532]$ and $x2 = [87126601]$.	2,K1,CO2
5.		Differentiate between genetic algorithm and genetic programming.	2,K1,CO3
6.		What is feature selection?	2,K1,CO3
7.		What is a neural network?	2,K1,CO4
8.		State the activation functions used in back propagation MLPs and its formula.	2,K1,CO4
9.		Enumerate the if-then rules for a first-order Sugeno fuzzy model.	2,K1,CO6
10).	Define: Decision tree.	2,K1,CO6
		PART - B (5 × 13 = 65 Marks) Answer ALL Questions	
11			12 12 001
11	•	a) Explain the basics of machine learning and its applications in detail.	13,K2,COI
		b) Write short notes on the following:(i) Evolutionary computing	5,K2,CO1
		(i) Fuzzy set theory	4,K2,CO1
		(iii) Neural networks	4,N2,CUI
12	,	a) Explain the basic concepts and working principle of genetic algorithms	13.K2 CO2
12		with relevant diagrams.	10,112,002
		OR	
		b) Explain the GA cycle with relevant diagrams and a flow chart.	13,K2,CO2
Ki	1 – F	Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create	11625

13. a) Elaborate the process to design texture filters with the help of genetic ^{13,K2,CO3} algorithms.

OR

b) Describe the process of designing a knowledge acquisition system in ^{13,K2,CO3} image processing applications using machine learning.

14.	a)	Discuss back propagation for feed-forward networks in detail.	13,K2,CO4

OR

- b) What are adaptive resonance networks? Explain ART1 in detail. 13,K2,CO4
- 15. a) Explain the ANFIS architecture with a neat diagram for Tsukamoto ^{13,K2,CO6} model in detail.

OR

b) Explain how the CART algorithm is used for structure identification in ^{13,K2,CO6} ANFIS in detail.

PART - C $(1 \times 15 = 15 \text{ Marks})$

15,K2,CO5

 $A = \{0. 2/1 + 0. 3/2 + 0. 4/5 + 0. 5/4\}$

 $\mathbf{B} = \{1/1 + 0, 2/2 + 0, 2/3 + 1/4\}.$

Compute the algebraic sum, algebraic product, bounded sum, and bounded difference of the given fuzzy sets.

OR

b) (i) Explain Fuzzy max-min composition and Fuzzy max-product 8,K2,CO5 composition in detail.
(ii) Discuss the classical equivalence relation and fuzzy equivalence 7,K2,CO5

relation in detail.

Consider two fuzzy sets:

16. a)

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

2

11625