Reg. No.

Question Paper Code 11653
B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2022

Fourth Semester
Civil Engineering
20CEPC402 - STRENGTH OF MATERIALS II
(Regulations 2020)

Duration: 3 Hours

Max. Marks: 100

PART - A ($\mathbf{1 0} \times 2=20$ Marks $)$
 Answer ALL Questions

1. Define the terms: Strain Energy and Modulus of Resilience.	Marks, K-Level, CO 2,K1,CO1
2. Write the formula to calculate the strain energy due to torsion.	2,K1,COI
3. State and explain the principle of virtual work.	2,K1,CO2
4. State Castigliano's first theorem.	2,K2, CO2
5. Write Rankines-Gordon formula.	2,K2,CO4
6. Distinguish between thick and thin cylinder.	2,K2,CO4
7. Define Principal Stress and Principal Planes.	2,Kl, $\mathrm{CO5}$
8. Explain the Maximum principal strain theory.	2,K1,CO5
9. Write the assumptions made in Winkler Bach Equations.	2,K1,CO6
10. Define Unsymmetrical bending.	2,K1,CO6

PART - B ($5 \times 13=65$ Marks)

Answer ALL Questions
11. a) Determine the vertical displacement at free end of a cantilever beam
$13, \mathrm{~K} 3, \mathrm{CO} 2$ shown in fig. using method of virtual work. Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=825 \times 10^{7} \mathrm{~mm}^{4}$.

b) The simple portal frame is shown in figure below is asymmetrically $13, K 3, \mathrm{CO} 2$ loaded. EI is constant. Analyze the frame by the strain energy method. Sketch the bending moment diagram.

12. a) A steel bar 3 m long and $2500 \mathrm{~mm}^{2}$ in area hangs vertically, which is securely fixed on a collar at its lower end. If a weight of 15 kN falls on the collar from a height of 10 mm , determine the stress developed in the bar. What will be the strain energy stored in the bar? Take E as 200 GPa .

OR

b) (i) Prove that the maximum stress induced in a body due to suddenly applied load is twice the stress induced when the same load is applied gradually.
(ii) State and prove Maxwell's reciprocal theorem.
13. a) A thin cylindrical shell 1 m in diameter and 3 m long has a metal thickness of 10 mm , if it is subjected to an internal pressure of $3.5 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the changes in length, diameter and volume. Take $\mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ratio $=0.30$.

OR

b) Derive Euler's formula when both ends of the columns are fixed and also one end of the column is fixed and the other end is free.
14. a) The rectangular stress components of a point in three dimensional stress system are defined as $\sigma x=20 \mathrm{MPa}, \sigma y=-40 \mathrm{MPa}, \sigma z=20 \mathrm{MPa}$, $\tau x y=40 \mathrm{MPa}, \tau y z=-60 \mathrm{MPa}$ and $\tau \mathrm{zx}=20 \mathrm{MPa}$. Examine the principal stresses and principal planes. Also determine associated direction of the state of stress.

OR

b) In a material, the principal stresses are $60 \mathrm{MN} / \mathrm{m}^{2}, 48 \mathrm{MN} / \mathrm{m}^{2}$, $36 \mathrm{MN} / \mathrm{m}^{2}$, Find the following: (i) Total strain energy (ii) Volumetric strain energy (iii) Shear strain energy (iv) Factor of safety on the total strain energy criterion if the material yields at $120 \mathrm{MN} / \mathrm{m}^{2}$, Take $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}, 1 / \mathrm{m}=0.3$.
15. a) A curved bar of rectangular section, initially unstressed is subjected to bending moment of 2000 Nm tends to straighten the bar. The section is 5 cm wide and 6 cm deep in the plane of bending and the mean radius of curvature is 10 cm . Judge the position of N.A and the stress at the linear and outer face.

OR

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create
b) A Channel section has flanges $120 \mathrm{~mm} \times 20 \mathrm{~mm}$ and web $160 \mathrm{~mm} \times$ 10 mm . Total depth of the section is 200 mm . Determine the shear center of the channel section.

PART - C ($\mathbf{1} \times \mathbf{1 5}=\mathbf{1 5}$ Marks $)$

16. a) A propped cantilever of span 6 m is subjected to a UDL of $3 \mathrm{kN} / \mathrm{m}$ over a length of 5 m from the fixed end. Write the prop reaction and draw the SFD and BMD.

OR

b) A fixed beam AB of span 5 m carries a point load of 90 kN at its mid $15, \mathrm{~K}, \mathrm{CO} 3$ span and a UDL of $15 \mathrm{kN} / \mathrm{m}$ throughout its length. Investigate (i) Fixed end moments (ii) Reactions. Also Draw the SFD and BMD.

