	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~											
	M		Reg. No.									
	of Mar Qu	estion Paper Cod	le 1	165	3							
	B.E. / B.Tech.	- DEGREE EXA	MINATI	ONS	, NC	)V	/ D]	EC	20	22		
		Fourth S	emester									
		Civil Eng										
	<b>20CEP</b>	C402 - STRENG		ATE	ERIA	LS	5 II					
Р	uration: 3 Hours	(Regulation	ons 2020)								100	
D	uration: 5 Hours	PART - A (10 >	2 - 20 M	anle			N	Vlax	κ. ΙV	Tarks	s: 100	
		Answer AL			»)							
1.	Define the terms: Str				ionce						Mari K-Level 2,K1,C	, CO
2.	Write the formula to										2,K1,C	
3.	State and explain the			ue 10	1015	1011.					2,K1,C	
4.	State Castigliano's fi										2,K2,C	
5.	Write Rankines-Gord										2,K2,C	CO4
6.	Distinguish between	thick and thin cyli	nder.								2,K2,C	CO4
7.	Define Principal Stre										2,K1,0	05
8.	Explain the Maximu										2,K1,0	CO5
9.	Write the assumption			uatio	ns.						2,K1,0	CO6
10.	Define Unsymmetric										2,K1,0	CO6

# **PART - B** ( $5 \times 13 = 65$ Marks) Answer ALL Questions

11. a) Determine the vertical displacement at free end of a cantilever beam  13,K3,CO2  shown in fig. using method of virtual work. Take E = 2 x 10⁵ N/mm² and I = 825 x 10⁷ mm⁴.



b) The simple portal frame is shown in figure below is asymmetrically *13,K3,CO2* loaded. EI is constant. Analyze the frame by the strain energy method. Sketch the bending moment diagram.

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create 11653



A steel bar 3 m long and 2500 mm² in area hangs vertically, which is 13,K2,CO1 12. a) securely fixed on a collar at its lower end. If a weight of 15 kN falls on the collar from a height of 10 mm, determine the stress developed in the bar. What will be the strain energy stored in the bar? Take E as 200 GPa.

#### OR

8,K2,COI (i) Prove that the maximum stress induced in a body due to suddenly b) applied load is twice the stress induced when the same load is applied gradually.

(ii) State and prove Maxwell's reciprocal theorem.

13,K2,CO4 A thin cylindrical shell 1m in diameter and 3m long has a metal 13. a) thickness of 10mm, if it is subjected to an internal pressure of 3.5N/mm². Determine the changes in length, diameter and volume. Take  $E = 2.1 \times 10^5 \text{ N/mm}^2$  and Poisson's ratio = 0.30.

#### OR

- Derive Euler's formula when both ends of the columns are fixed and 13,K2,CO4 b) also one end of the column is fixed and the other end is free.
- 14. The rectangular stress components of a point in three dimensional a) stress system are defined as  $\sigma x = 20$  MPa,  $\sigma y = -40$  MPa,  $\sigma z = 20$  MPa,  $\tau xy = 40$  MPa,  $\tau yz = -60$ MPa and  $\tau zx = 20$  MPa. Examine the principal stresses and principal planes. Also determine associated direction of the state of stress.

### OR

- In a material, the principal stresses are 60 MN/m², 48 MN/m², 13,K3,CO5 b) 36 MN/m², Find the following: (i) Total strain energy (ii) Volumetric strain energy (iii) Shear strain energy (iv) Factor of safety on the total strain energy criterion if the material yields at 120 MN/m², Take  $E = 200 \text{ GN/m}^2$ , 1/m = 0.3.
- 15. a) A curved bar of rectangular section, initially unstressed is subjected to 13,K3,CO6 bending moment of 2000 Nm tends to straighten the bar. The section is 5 cm wide and 6 cm deep in the plane of bending and the mean radius of curvature is 10 cm. Judge the position of N.A and the stress at the linear and outer face.

# OR

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 11653

2

5,K2,CO1

13.K3.CO5

b) A Channel section has flanges 120mm x 20mm and web 160mm x ^{13,K3,C06} 10mm. Total depth of the section is 200mm. Determine the shear center of the channel section.

# PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) A propped cantilever of span 6 m is subjected to a UDL of 3 kN/m ^{15,K3,CO3} over a length of 5m from the fixed end. Write the prop reaction and draw the SFD and BMD.

### OR

b) A fixed beam AB of span 5m carries a point load of 90 kN at its mid ^{15,K3,CO3} span and a UDL of 15 kN/m throughout its length. Investigate (i) Fixed end moments (ii) Reactions. Also Draw the SFD and BMD.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

3

11653