		R	eg. No.									
		Question Paper Code	1	1662								
	B.E. / B.	Гесh DEGREE EXAN	/INATI	ONS.	NOV	- //DI	EC	2022	2			
	3	Fourth Se		,			-					
	\mathcal{J}_{l_r}	Mechanical En	ngineeri	ng								
	20N	MEPC404 - APPLIED T			CIEN	CE	S					
	1,	(Regulation										
(t	sage of Steam	m Tables, Refrigeration T	able &	Molie	r Cha	rt ar	e P	ermi	tted)		
	: 3 Hours							lax.			00	
		PART - A (10 × 2	=20 M	arks)								
		Answer ALL	Question	IS +								
Write any four differences between Otto and Diesel cycle.								K-Le	larks, evel, CO 2,CO1			
Define mean effective pressure.								2, K	1,C01			
What is the working principle of reaction turbine?								2,K1,CO2				
Define nozzle efficiency.								2,K1,CO2				
Define clearance ratio of an air compressor.								2,K1,CO4				
Wh	at are the adv	vantages of multistage co	mpressi		th inte	er-co	ooli	ing o	ver	2,K	(1,CO4	
What is the function of camshaft and crank shaft?								2,K1,CO5				
Why a choke is used in carburetor?									2,K1,CO5			
	What is commonly used unit of refrigeration?									2,K1,CO6		
		numidity and wet bulb ter		e.						2, K	(1,C06	
		PART - B (5 × 13 Answer ALL										
a)	Define Bray Effective Pr	yton Cycle with Derivation			ndard	Сус	ele	& M	ean	13,1	K3,CO1	

PART - B

Define Brayton Cycle with I 11. a) Effective Pressure.

OR

- An Engine-working on Otto cycle has a volume of 0.45 m³, pressure 13,K2,COI 1 bar and temperature 30°C at the beginning of compression stroke. At the end of compression stroke, the pressure is 11bar and 210KJ of heat is added at constant volume. Determine:
 - (i) Pressure, Temperature and Volumes at salient points in the cycle.
 - (ii) Efficiency.
- The inlet condition to a steam nozzle are 10 bar and to 250°C. The exit 13,K2,CO2 12. pressure is 2 bar. Assuming isentropic condition and negligible. Determine velocity at inlet for 1 kg/s of mass of steam,
 - (i) Throat area
 - (ii) Exit velocity
 - The exit area of the nozzle. (iii)

Duration: 3 Hours

1.

2.

3.

4.

5.

6.

7.

8.

9.

11662

- b) Derive the expression for critical pressure ratio in terms of index of 13,K2,CO2 expansion.
- Explain the construction working of multistage compressor and discuss 13,K3,CO4 13. the perfect and imperfect intercooling with neat sketch.

OR

- A multi stage air compressor is to be designed to evaluate the pressure 13,K2,CO4 from 1 bar to 120 bar. Such that the single stage pressure ratio not to exceed 4. Find:
 - (i) Number of stages
 - (ii) Exact stage pressure ratio
 - (iii) Intermediate pressure.
- Explain with neat sketch air cooling of engines and explain any one 13,K3,C05 lubrication system adopted in multi cylinder SI engines.

OR

- b) Explain the combustion phenomenon in SI engines. What are the 13,K3,CO5 factors influencing the flame speed in SI engines?
- Explain the construction and working of vapour compression 13,K3,C06 15. refrigeration system.

OR

b) Explain the construction and working of summer and winter air 13,K3,C06 conditioning systems.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. A single row impulse turbine develops 132.4 kW at a blade speed of 15,K3,CO3 175 m/s. using 2 kg of steam per second. Steam leaves the nozzle at the 400 m/s. Velocity coefficient of the blades is 0.9. Steam leaves the turbine blades axially. Determine nozzle angle, blade angles at entry and exit. Assuming no shock.

- 15,K2,CO3 Steam enters the blade row of an impulse turbine with a velocity of 600 m/s at an angle of 25° to the plane of rotation of blades. The mean blade speed is 200 m/s. The blade angle at the exit is 30°. The Blade friction is 10%. Determine:
 - The blade angle at inlet (i)
 - (ii) The work done per kg of steam
 - (iii) The diagram efficiency.

11662