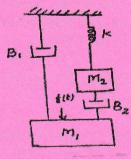
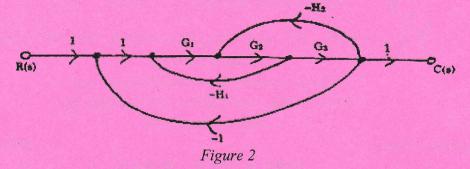
·			
•	2023 Re	g. No.	
	JAM Question Paper Code	11663	
	D.B.E./B.Tech DEGREE EXAM	INATIONS, NOV/DEC 2	022
	Fourth Set	mester	
	Electrical and Electro	nics Engineering	
	20EEPC404 - CONTRO	L ENGINEERING	
	(Regulations		
			ax. Marks: 100
	PART-A (10 × 2		
	Answer ALL (Marks, K-Level,CO
1.	List the basic elements in control systems.		2,K1,CO1
2.	Compare open loop and closed loop system.		2,K1,CO1
3.	Assess the standard test signals employed for time domain studies.		2,K1,CO2
4.	Classify type and order of the system.		2,K1,CO2
5.	State Nyquist stability criterion.		2,K1,CO3
6.	What is characteristic equation?		2,K1,CO3
7.	Define phase margin and gain margin.		2,K1,CO4
8.	Define the terms: resonant peak and reson	ant frequency.	2,K1,CO4
9.	Identify the necessity for lag/lag-Lead cor	npensation.	2,K1,CO5
10.	Compare Lag and Lead compensator.		2,K1,CO5

PART - B (5 × 13 = 65 Marks) Answer ALL Questions

7,K2,CO1 (i) Draw the force-voltage analogy and force current analogy for the 11. a) mechanical system shown in Figure 1.




Figure 1

(ii) Explain armature controlled DC servomotor with relevant block 6,K2,COI diagram.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 1

11663

b) Solve the transfer function using Mason's Gain formula for the system ^{13,K3,CO1} whose signal flow graph is shown in Figure 2.

12. a) Derive the expression for second order system for under damped case ^{13,K2,CO2} and when the input is unit step.

OR

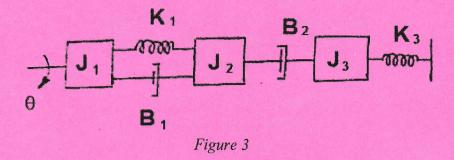
- b) A unity feedback system us characterized by the open loop transfer 13,K3,CC function .G(S)=1/(s(0.5s+1)(0.2s+1))
 - (i) Write the closed loop transfer function C(s)/R(s).
 - (ii) Find damping factor, natural frequency of the system.
 - (iii) Determine rise time, peak time and peak overshoot of the system.
 - (iv) Calculate steady state error due to unit step.
- a) Sketch the root locus of the system whose open loop Transfer Function 13,K3,CO3 is given by . G(S)=K/s(s+2)(s+4).Find the value of K so that damping ratio of the system is 0.5.

OR

- b) For each of the characteristics equation of feedback control system ^{13,K3,CO3} given, determine the range of K for stability. Examine the value of K so that the system is marginally stable and the frequency of sustained oscillations.
 - (i) $S^4+25S^3+15S^2+20S+K=0$ (ii) $S^3+3KS^2+(K+2)S+4=0$
- a) Plot the bode diagram for the given transfer function and estimate the ^{13,K3,CO4} gain and phase cross over frequencies. G(S)H(S)=10/s(1+0.4s)(1+0.1s)

OR

b) For the following system, sketch the polar plot. G(S)=500/s(s+6)(s+9)


15. a) Write the procedure for lag lead compensator using bode plot in detail. ^{13,K2,C05} OR

b) The open loop transfer function of the uncompensated system is 13,K3,CO5 G(S)=K/S(S+2).Design a lag compensator for the system so that the static velocity error constant Kv is 10 sec-1, the phase margin $\ge 60^{\circ}$.

13,K3,CO4

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 11663

16. a) Solve the given mechanical rotational system and write the differential 15,K3,CO1 equations governing the as shown in Figure 3. Draw the both electrical analogous circuits.

OR

b) Calculate the static error coefficients for a system whose transfer ^{15,K3,CO2} function is G(S)H(S)=10/S(1+S)(1+2S) And also Calculate the steady state error for $r(t)=1+t+(t^2/2)$.

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create 3

11663