Reg. No.

Question Paper Code

11667

B.E./B.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022

Fourth Semester

Mechanical Engineering

(Common to Electrical and Electronics Engineering)

20BSMA403 - STATISTICAL AND NUMERICAL METHODS

(Regulations 2020)

Duration: 3 Hours

Max. Marks: 100

23/01/23

PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions

1.	Write down the formula for t-test for the significance of difference of two	Marks, K-Level,CO 2,K1,CO1
2,	means? A standard sample of 200 tins of coconut oil gave an average weight of 4.95kgs with a standard deviation of 0.21 kg. Do we accept that the net weight is 5 kgs per tins at 5% level of significance?	2,K2,CO1
3.	What are the basic principles in the design of experiment?	2,K1,CO2
4.	What are the uses of ANOVA?	2,K1,CO2
5.	Solve: $2x + y = 3, x - 2y = -1$ by using Gauss elimination method.	2,K2,CO2
6.	What is the criterion for the convergence in Fixed point iteration method?	2,K1,CO3
7.	Find the third divided differences of $f(x) = x^2 + x + 2$ for the arguments 1,3,6,11.	2,K1,CO4
8.	Write Newton's backward difference formula to find the derivative $\frac{dy}{dx}$ at $x = x_n$.	2,K1,CO4
9.	Find $y(0.01)$ by using Euler's method, given that $\frac{dy}{dx} = -y, y(0) = 1$.	2,K1,CO5
10.	Write down the modified Euler formulae for $y' = f(x, y)$.	2,K1,CO5
	PART - B (5 × 13 = 65 Marks) Answer ALL Questions	
11.	a) (i) A mathematics test was given to 50 girls and 75 boys. The girls made an average grade of 76 with a SD of 6, while boys made an	8, K2 ,CO1

average grade of 82 with a SD of 2. Test whether there is any significant difference between the performance of boys and girls. (ii) A dice is thrown 400 times and a throw of 3 or 4 is observed 150 8,K3,CO1

times. Test the hypothesis that the dice is fair. OR

11667 K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

particular race Horse A:	with	followi	ng resu	lts:	22		time to run a	1 0, 1 2,00
Horse R.	20	20	34	33	33	29	34	
Test whether	4 h = 1.	30	. 30	24	27	29	-	
significance.	the h	orse A	1s run	ning fa	ster tha	n B ai	t 5% level of	
(ii) The deman to vary from	nd for day-	a parti to-day.	cular sp . In a	are par sample	t in a fa e study	ctory v the	was found following	8, <i>K2</i> ,CO1
information wa	as obta	uneu.						
information was Days :	as obta I	Mon	Tues	Wed	Thurs	Fri	Sat	
information was Days : No. of spares	as obta I	Mon 1124	Tues	Wed	Thurs	Fri	Sat	

12. a) The following are the number of mistakes made in 5 successive days by 4 technicians working for a photographic laboratory test at a level of significance $\alpha = 0.01$. Test whether the difference among the four samples means can be attributed to chance.

16,K4 502

Technician								
Ι	IV							
6	14	10	9					
14	9	12	12					
10	12	7	8					
8	1	15	10					
11	14	11	11					
	OR		1					

b) A farmer wishes to test the effect of 4 fertilizers A, B, C, D on the 16,K2,CO2 yield of wheat. The fertilizers are used in a LSD and the result are tabulated here. Perform an analysis of variance.

A18	C21	D25	B11
D22	B12	A15	C19
B15	A20	C23	D24
C22	D21	B10	A17

13. a) (i) Solve 5x - y + z = 10, 2x + 4y = 12; and x + y + 5z = -1 by 8,K3,CO3 Gauss Seidel Method.

(ii) Solve using Newton Raphson method for $3x - \cos x = 1$ upto 4 8,K3,CO3 decimal places.

OR

b) (i) Using Gauss Jordan method solve 10x + y + z = 12, 2x + 10y + z = 13, x + y + 5z = 7. 8,K3,C03

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create 11667 2

(ii) Find the numerically largest eigen value and vector matrix 8,K3,CO3 $A = \begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \end{pmatrix}$ using power method.

$$(2 \ 0 \ -4$$

14. a) (i) The population of a town is as follows:

X: Year	1941	1951	1961	1971	1981	1991
Y:Population in thousands	20	24	29	36	46	51

Estimate the population increase during the period 1946 to 1976.

(ii) Using Lagrange's Interpolation Formula, fit a polynomial to the 8,K2,CO4 following data:

x	-1	0	2	3
У	-8	3	1	12

And hence find y at x = 1.5.

OR

b) (i) The velocity of a train which starts from rest is given by the 8,K3,CO4 following table, time being reckoned in minutes from the start and speed in miles per hour.

minutes	2	4	6	8	10	12	14	16	18	20
miles/hr	10	18	25	29	32	20	11	5	2	0
Find the die	tomas	0.0.1.0.	ad in	20						<u> </u>

Find the distance covered in 20 minutes.

(ii) Evaluate $\int_{0}^{3} \frac{dx}{5+4x}$ using Trapezoidal Rule & Simpson's 1/3rd Rule 8,K3,CO4

with h=0.5 and hence find the value of log_e 5.

b)

Solve $\frac{dy}{dr} = 1 - y$, y(0) = 0, Find the following by using

- (i) Euler's Method for y(0.1)
- (ii) Modified Euler's method for y(0.2)
- (iii) Modified Euler's method for y(0.3)
- (iv) Milne's Predictor-Corrector Formula for y(0.4).

OR

Using Runge-Kutta Method of 4th order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ given

16,K2,CO5

16,K2,CO5

y(0) = 1 at x = 0.2, 0.4 Take h = 0.2.

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create 11667

8,K3,CO4