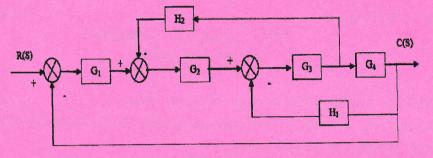
		Reg. No.					
		Question Paper Code	1679				
		B.E. / B.Tech DEGREE EXAMINATI	IONS N		EC 20	22	
		Third Semester			EC 20		
		Mechanical and Automation H	Ingineer	ing			
	2	20EIPC304 - BASIC ELECTRONICS AN	D CONT	FROL	SYST	EM	11
		(Regulations 2020)					
D	uratio	on: 3 Hours			Max.	Marks:	100
		$PART - A (10 \times 2 = 20 M)$					
1.	Dros	Answer ALL Questio					Marks, K-Level, CO 2,K1,CO1
2.	Among CB, CE and CC Configurations, which one is popular? Why?						2,K2,CO1
2. 3.		w the non-inverting amplifier.	ne is pop	/uiui .	·· · · · · · · · · · · · · · · · · · ·		2,K1,CO2
3. 4.		fine – CMRR.					2,K1,CO2
5.							2,K1,CO3
6.		at are standard analog signal?					2,K1,CO3
7.		hat are the components of control system?					2,K1,CO4
8.		hat is a signal flow graph?					2,K1,CO4
9.		fine - Pole and Zero.					2,K1,CO5
10.	Wh	nat do you mean steady state error?					2,K1,CO5
		PART - B (5 × 13 = 65 M Answer ALL Question					
11.	a)	(i) How a PN junction diode is working? characteristics of PN junction diode with ne	Draw an at diagra	nd exp m.	olain tł	ne V-I	8,K2,CO1
		(ii) Discuss about drift and diffusion current	s of PN	Junctio	on dioc	le.	5,K2,CO1
		OR					
	b)	MOSFET.					8,K2,CO1
		(ii) Draw the working of Silicon Controlled	rectifier	with 1	neat dia	igram.	5,K2,CO1
12.	a)	Draw the circuit diagram of Emitter Couple and derive expressions for differential g CMRR, input and output impedance. OR	ed BJT d gain, con	ifferen mmon	tial am mode	plifier gain,	13,K2,CO2

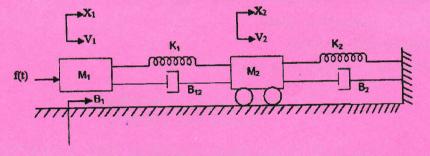
1. 2. 3. 4. 5. 6. 7. 8. 9.

11


b) Explain with neat circuit diagram, the working of Hartley Oscillator ^{13,K2,CO2} using Transistors. Derive an expression for frequency of oscillation.

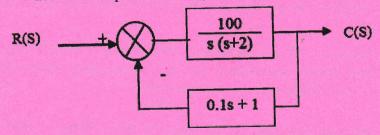
K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 11679 1

13. a) Describe the operation of a DAC. What is the advantage of R/2R ladder ^{13,K2,CO3} DACs over those that use binary weighted resistors?Discuss the applications of DAC.


OR

- b) Describe the working of successive approximation and flash ADC. 13,K2,CO3
- 14. a) Using Block diagram reduction technique find the transfer function for ^{13,K3,CO4} the system shown in fig.

OR


b) Write the differential equation governing the mechanical translational ^{13,K3,CO4} systems and find the transfer function. Draw the force voltage and force current electrical analogies.

15. a) Derive the expressions for second order system for under damped case ^{13,K3,CO5} and when the input is unit step.

OR

b) A positional control system with velocity feedback is shown in fig. What is the response of the system for unit step input?

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 11679 2

13,K3,CO5

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a (i) A 5-bit DAC has a current output. For a digital input of 101000, an ^{10,K3,CO3} output current of 10mA is produced. What will I_{OUT} be for a digital input of 11101?
(ii) What is the largest value of output voltage from an 8-bit DAC that ^{5,K3,CO3} produces 1.0V for a digital input of 00110010?

OR

15,K3,CO3

b) Assume the following values for the Digital Ramp ADC clock 15,K2 frequency = 1 MHz; VT = 0.1 mV; DAC has F.S. output = 10.23 V and a 10-bit input. Determine the following values. a. The digital equivalent obtained for VA = 3.728 V. b. The conversion time. c. The resolution of this ADC.

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create 11679