	0			and a		1	1 21 2		-
			2		-	-1	121		
1			1.0	5		8 1	1 1	1	
	Γ.	1	V		See	"nu"			

Reg. No.	
----------	--

Question Paper Code

11689

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022

Third Semester

Information Technology

(Common to Computer Science and Engineering, Computer and Communication

Engineering & M.Tech. - Computer Science and Engineering)

20ITPC303 - COMPUTER ORGANIZATION AND ARCHITECTURE

(Regulations 2020)

Duration: 3 Hours

Max. Marks: 100

PART - A (10 × 2 = 20 Marks) Answer ALL Questions

		K-Level, CO
1.	Define little endian format with big endian format.	2,K1,CO1
2.	What is program counter?	2,K1,CO1
3.	Show the number $(1259.125)_{10}$ in single precision format.	2,K1,CO2
4.	Draw the format for R-Type, I type and J-Type Instruction.	2,K1,CO3
5.	State the 5 stages of pipelining.	2,K1,CO3
6.	Discriminate UMA and NUMA.	2,K1,CO4
7.	Differentiate strong scaling and weak scaling.	2,K1,CO4
8.	Define a cluster.	2,K1,CO5
9.	Define memory access time?	2,K1,CO6
10	What is cache memory?	2,K1,CO6

PART - B (5 × 13 = 65 Marks) Answer ALL Questions

11.	a)	(i) Explain in detail the various components of computer system with			
		neat diagram. (ii) State the CPU performance equation and discuss the factors that affect performance.	6,K2,CO1		
		OR			
	b)	Explain the various addressing modes with suitable examples.	13,K2,CO1		
12.	a)	Explain data hazards and how to overcome it.	13,K2,CO3		
		OR			
	b)	Explain dynamic branch prediction.	13,K2,CO3		
K1_	Rom	ember: K2 – Understand: K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create	11689		

1

13.	a)	(i) Compare and contrast fine grained and coarse grained multithreading.	10,Ř2,CO4				
		(ii) Write a note on message passing. OR	3,K2,CO4				
b) Describe the main characteristics of instruction level parallelism. Differentiate static and dynamic multiple issues.							
14.	a)	(i) State the advantages of multiprocessor systems.	6,K2,CO5				
		(ii) Explain clusters in detail.	7,K2,CO5				
	OR						
	b)	Write detailed Flynn's classification with necessary diagrams.	13,K2,CO5				
15.	a)	Explain in detail about memory Hierarchy with neat diagram.	13,K2,CO6				
		OR	\bigcirc				
	b)	Explain in detail about DMA operations.	13,K2,CO6				

PART - C $(1 \times 15 = 15 \text{ Marks})$

- 16. a) Explain Booth's Algorithm and Interpret the result of multiplying the ^{15,K2,CO2} following signed numbers using Booth's algorithm, $A=(-34)_{10} = (1011110)_2$ and $B=(22)_{10} = (0010110)_2$ where B is multiplicand and A is multiplier.
 - OR
 - b) Explain Restoring algorithm and Interpret the result of dividing the 15,K2,CO2 following unsigned numbers using the restoring division method where dividend = 1000 and Divisor= 00011.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 11689

2