Reg. No. \square
Question Paper Code 11693

B.E./B.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022

Third Semester
Mechanical Engineering
(Common to Mechanical and Automation Engineering)
20MEPC302 - ENGINEERING THERMODYNAMICS
(Regulation 2020)
(Use of Psychometric chart and Steam tables are permitted)
Duration: 3 Hours
Max. Marks: 100

$$
\text { PART - A }(10 \times 2=20 \text { Marks })
$$

Answer ALL Questions
Marks,

1. What are the classical / macroscopic approaches in thermodynamics? 2,K1,COI
2. Show that energy of an isolated system is always constant. 2,Kl,COI
3. An inventor claims to have developed an engine which absorbs 100 kW of 2, $\mathrm{K} 2, \mathrm{CO} 2$ heat from a reservoir at 1000 K produces 60 kW of work and rejects heat toa reservoir at 500 K . Will you advise investment in its development?
4. What is the difference between a heat pump and a refrigerator? 2,K2,CO2
5. Define a pure substance. Give examples. 2,KI,CO3
6. List the advantages of Reheating of steam. 2,K1,CO3
7. Define Avogadro's law. 2,Kl,CO4
8. Write the Clausius-Clapeyron equation and label all the variables. 2,KI,CO4
9. Explain Dalton's law of partial pressure. 2,KI,CO5
10. How does the wet bulb temperature differ from the dry bulb temperature? 2,K1,CO5
PART - B (5 $\times 13=65$ Marks $)$
Answer ALL Questions
11. a) The values of internal energy at all end states if initial value is $105 \mathrm{~kJ} . \quad 13, \mathrm{~K} 2, \mathrm{CO} 1$ A fluid system, contained in a piston and cylinder machine, passes through a complete cycle of four processes. The sum of all heat transferred during a cycle is -340 kJ . The system completes 200 cycles per min.

Process	Q (kJ/min)	$\mathbf{W}(\mathbf{k J} / \mathbf{m i n})$	$\mathbf{E}(\mathbf{k J} / \mathbf{m i n})$
$1-2$	0	4340	-
$2-3$	42,000	0	-
$3-4$	$-4,200$	0	$-73,200$
$4-1$	-	-	-

Complete the above table showing the method for each item, and compute the net rate of work output in kW .
K1-Remember; K2-Understand; K3-Apply; K4-Analyze; K5-Evaluate; K6-Create

OR

b) Air is compressed from 100 kPa and $22^{\circ} \mathrm{C}$ to a pressure of 1 MPa while being cooled at the rate of $16 \mathrm{~kJ} / \mathrm{kg}$ by circulating water through the compressor casing. The volume flow rate of air at inlet Condition is $150 \mathrm{~m}^{3} / \mathrm{min}$ and power input to compressor is 500 kW . Neglecting the gravitational potential energy, determine the mass flow rate and the temperature of air at exit.
12. a) A Carnot heat engine works between two temperatures of source at 900 K and sink at 300 K . It operates a Carnot refrigerator working between two temperatures of 300 K and 250 K . The heat engine is supplied with $50 \mathrm{~kJ} / \mathrm{s}$ and it not only operates refrigerator, but also delivers a net power of 10 kW . Determine the heat transferred to the refrigerant in the refrigerator and the net heat transfer to the sink maintained at 300 K .
b) One kg of ice at $-5^{\circ} \mathrm{C}$ is exposed to the atmosphere which is at $20^{\circ} \mathrm{C}$. The ice melts and comes into thermal equilibrium with the atmosphere. a. Determine the entropy increase of the universe. b. What is the minimum amount of work necessary to convert the water back into ice at $-15^{\circ} \mathrm{C}$? Where Cp of the ice is $2.093 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and latent heat fusion of ice is $333.3 \mathrm{~kJ} / \mathrm{kg}$.
13. a) Define the following terms pertaining to pure substances like water: i)Sensible heating, ii)Latent heating, iii)Saturation states, iv)Saturation pressure, v)Saturation temperature, vi)Triple point, vii)Dryness fraction, viii)Superheated steam and Degree of super heat.

OR

b) Steam at $50 \mathrm{bar}, 400^{\circ} \mathrm{C}$ expands in a Rankine cycle to 0.34 bar. For a mass flow rate of $150 \mathrm{~kg} / \mathrm{sec}$ of steam, determine i) Power developed, ii) Thermal efficiency, iii) Specific steam consumption.
14. a) Derive Maxwell relations.

OR

b) Determine the pressure of nitrogen gas at $\mathrm{T}=175 \mathrm{~K}$ and $\mathrm{V}=0.00375$ $\mathrm{m}^{3} / \mathrm{kg}$ on the basis of (i) The ideal gas equation of state, (ii) The van der waals equation of state. The van der waals constant for nitrogen are $\alpha=0.175 \mathrm{~m}^{6} \mathrm{kPa} / \mathrm{kg}^{2}, \mathrm{~b}=0.00138 \mathrm{~m}^{3} / \mathrm{kg}$.
15. a) A mixture of ideal gases consists of 4 kg of nitrogen and 6 kg of carbon dioxide at a pressure of 4 bar and a temperature of $20^{\circ} \mathrm{C}$.
Find: a) Mole fraction of each constituent, b) The equivalent molecular weight of the mixture, c) Equivalent gas constant of the mixture, d) Partial pressures and partial volumes, e) Volume and density of the mixture, and f) Cp and Cv of the mixture.

K1-Remember; K2 - Understand; K3-Apply; K4 - Analyze; K5-Evaluate; K6-Create

OR
b) A sling psychrometer in a laboratory test recorded the following readings: Dry bulb temperature $=35^{\circ} \mathrm{C}$ Wet bulb temperature $=25^{\circ} \mathrm{C}$ Calculate the following: (1) Specific humidity (2) Relative humidity (3) Vapour density in air (4) Dew point temperature (5) Enthalpy of mixture per kg of dry. Take atmospheric pressure $=1.0132$ bar.

$$
\text { PART - C }(1 \times 15=15 \text { Marks })
$$

16. a) A steam power plant operates on a theoretical reheat cycle. Steam at boiler at $150 \mathrm{bar}, 550^{\circ} \mathrm{C}$ expands through the high pressure turbine. It is reheated at a constant pressure of 40 bar to $550^{\circ} \mathrm{C}$ and expands through the low pressure turbine to a condenser at 0.1 bar. Draw T-s and h-s diagram. Find (i) Quality of steam at turbine exhaust (ii) Cycle efficiency (iii) Steam Rate in $\mathrm{kg} / \mathrm{kWh}$.

OR

b) It is required to design an air-conditioning plant for a small office room

15, K2,CO3

15,K2, COS

Outdoor conditions $-14^{\circ} \mathrm{C}$ DBT and $10^{\circ} \mathrm{C}$ WBT
Required conditions $-20^{\circ} \mathrm{C}$ DBT and 60% R.H.
Amount of air circulation $-0.30 \mathrm{~m}^{3} / \mathrm{min} . /$ person
Seating capacity of office - 60
The required condition is achieved first by heating and then by adiabatic humidifying.
Determine the following: (a) Heating capacity of the coil in kW and surface temperature required if the by pass factor of coil is 0.4 . (b) The capacity of the humidifier. Solve the problem by using psychrometric chart.

