13/2/23

	 	 	1	No. Chief	Table 1		
Reg. No.							

Question Paper Code

11710

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022

Third Semester

Computer Science and Business Systems 20BSMA305 - COMPUTATIONAL STATISTICS

(Regulations 2020)

(Usage of Statistical Table Permitted)

Duration: 3 Hours

Max. Marks: 100

PART - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions

		Marks, K-Level,CO
1.	$1 \left[x^2 + y^2 + 4x - 6y + 13 \right]$	n-Level, CO
	Find μ_x , μ_y , σ_x , σ_y and ρ_{xy} for the following $\frac{1}{2\pi}e^{-\frac{1[x^2+y^2+4x-6y+13]}{2}}$.	2,K3,CO1
2.	Find the correlation co-efficient of the random vector $X = (X_1, X_2)$	2,K3,CO1
	following BND with mean $(\mu_1, \mu_2) = (7,6)$ and $\Sigma = \begin{pmatrix} 8 & 2 \\ 2 & 5 \end{pmatrix}$.	
3.	Write the formula to find the residual of multivariate linear regression.	2,K1,CO2
4.	Write the properties of a matrix \overline{H} .	2,K1,CO2
5.	Define discriminant analysis and write its application.	2,K1,CO3
6.	What is the test statistic for the variable $p=2$ and population $g \ge 2$ in MANOVA?	2,K3,CO3
7.	Define scree plot.	2,K1,CO4
8.	What is the covariance structure for the orthogonal factor model?	2,K1,CO4
9.	Define k-mean clustering.	2,K1,CO5
10.	Write the four properties of a metric or distance measure.	2,K1,CO5
	PART - B (5 × 16 = 80 Marks)	
	Answer ALL Questions	
11.	a) (i) The life of a tube X_1 and X_2 are distributed as BND (2000, 0.1, 2500, 0.01, 0.87). If a filament diameter is 0.098, what is the probability that the tube will last 1950 hrs?	6,K3,CO1
	(ii) The co-variance matrix of a 3-dimensional vector $X = (X_1, X_2, X_3)$ $(25 -2 4)$	10,K3,CO1
	is given by $\Sigma = \begin{pmatrix} 25 & -2 & 4 \\ -2 & 4 & 1 \\ 4 & 1 & 9 \end{pmatrix}$. Determine the correlation matrix and	
	X_2 X_3	

correlation between X_1 and $\frac{X_2}{3} + \frac{X_3}{3}$.

b)	(i) Consider a bivariate normal distribution with $\mu_1 = 1$, $\mu_2 = 3$,	8,1
	$\sigma_{11} = 2$, $\sigma_{22} = 1$ and $\sigma_{12} = -0.8$	

1) Write bivariate normal density.

2) Write the squared statistical distance expression.

(ii) Find the maximum likelihood estimates of 2x1 mean vector
$$\mu$$
 and 8,K3,COI 2x2 covariance matrix Σ based on the random sample $X = \begin{pmatrix} 3 & 6 \\ 4 & 4 \\ 5 & 7 \\ 7 & 7 \end{pmatrix}$ from a bivariate normal population.

12. a)
(i) If the response variables take the value
$$Y = \begin{pmatrix} 10 & 100 \\ 12 & 110 \\ 11 & 105 \end{pmatrix}$$
 and the design matrix $X = \begin{pmatrix} 1 & 9 & 62 \\ 1 & 8 & 58 \\ 1 & 7 & 64 \end{pmatrix}$ takes the value.

- 1) Calculate β .
- 2) Calculate ê.
- 3) Find a linear regression model.

(ii) Find the regression co-efficients for the following

8, K3, CO2

K3.CO1

the regression.	co cilicicints	tor the rollo	Will B
<i>Y</i> ₁	10	12	11
Y ₂	100	110	105
<i>X</i> ₁	9	8	7
X ₂	62	58	64

OR

b) Given the mean vector and covariance matrix of
$$Y$$
, X_1 , X_2

16,K3,CO2

$$\mu = {\mu_y \choose \mu_x} = {5 \choose 2}, \ \Sigma = {10 \quad 1 \quad -1 \choose 1 \quad 7 \quad 3 \choose -1 \quad 3 \quad 2}.$$

Determine the following.

- 1) The best linear predictor $\beta_0 + \beta_1 X_1 + \beta_1 X_2$.
- 2) Mean square Error.
- 3) Multiple correlation coefficient.
- 4) Also verify that mean square error equals $\sigma_{yy}(1-\rho_y^2(x))$.

16,K3,CO3

$$\begin{pmatrix} \binom{9}{3} & \binom{6}{2} & \binom{9}{7} \\ \binom{0}{4} & \binom{2}{0} & \\ \binom{3}{8} & \binom{1}{9} & \binom{2}{7} \end{pmatrix}.$$

- 1) Calculate the linear discriminant function.
- 2) Classify the observation $x_0' = (2,7)$ as population π_1 or π_2 using rule with equal prior and equal cost.
- (ii) Compute the linear discriminant projection for the following set of 8,K3,CO3 data:

$$X_1 = \{ (4, 1) (2, 4) (2, 3) (3, 6) (4, 4) \}$$

 $X_2 = \{ (9, 10) (6, 8) (9, 5) (8, 7) (10, 8) \}.$

- 14. a) Consider an m = 1 factor model for the population with the covariance 16,K3,CO4 matrix $\Sigma = \begin{pmatrix} 1 & 0.9 & 0.7 \\ 0.9 & 1 & 0.4 \\ 0.7 & 0.4 & 1 \end{pmatrix}$. Show that there is a unique choice of L and Ψ with $\Sigma = LL' + \Psi$, but $\Psi_1 < 0$, so the choice is not admissable.
 - Convert the covariance matrix $\Sigma = \begin{pmatrix} 1 & 4 \\ 4 & 100 \end{pmatrix}$ to correlation matrix ρ .

 Determine the principle components Y_1 and Y_2 from the ρ matrix. Also compute $\rho_{Y_1, Z_1}, \rho_{Y_1, Z_2}, \rho_{Y_2, Z_1}$ and ρ_{Y_2, Z_2} .
- 15. a) Suppose we measure two variables X_1, X_2 for each of four items 16,K3,CO5 A,B,C,D.

	<i>X</i> ₁	X ₂
A	2	4
В	3	6
C	2	5
D	3	2

Use k-means clustering technique to divide the items into k = 2 clusters.

OR

b) Find the clusters using Single Linkage procedure. Use Euclidean 16,K3,CO5 distance and draw the dendogram.

Points	A	В	C	D	E
X	2	6	2	2	5
Y	5	5	4	2	4