Reg. No.

Question Paper Code

11712

B.E./B.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022

Third Semester

Civil Engineering

(Common to ECE, EEE, EIE, ICE & CCE)

20BSMA301 - LINEAR ALGEBRA, PARTIAL DIFFERENTIAL EQUATIONS AND TRANSFORMS

(Regulation 2020)

Duration: 3 Hours

Max. Marks: 100

PART-A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions

		Marks, K-Level,CO
1.	Show that x, y and z are vectors in a vector space V such that	2,K2,CO1
	x + y = y + z then x = y.	
2.	Let $V = R^3$, $S = \{(1,2,0), (0,-5,-7)\}$ and $V = (2,-5,7) \in V$. Verify whether V	2,K2,CO1
112.2	is a linear combination of S or not.	
3.	Show that T is linear when $T: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by	2,K2,CO2
	$T(a_1, a_2) = (2a_1 + a_2, a_1).$	
4.	If u and v are vectors in an inner product space. Prove that	2,K2,CO2
	$ u+v ^2 + u-v ^2 = 2(u ^2 + v ^2).$	
5.	Find the PDE of all planes having equal intercepts on the x and y axis.	2,K1,CO3
6.	Form the partial differential equation by eliminating the arbitrary constants	2,K2,CO3
	'a' and 'b' from $z = ax + by$.	
7.	Find Fourier Sine Transform of e^x , for $x > 0$	2,K2,CO4
8.	State Parsevel's Identity.	2,K1,CO4
9.	Define Z- transform.	2,K1,CO5
10.	Find $Z\{na^n\}$.	2,K2,CO5

PART - B $(5 \times 16 = 80 \text{ Marks})$

Answer ALL Questions

11. a)	(i) In $R^3(R)$, show that the vectors $(1, 4, -2)$ $(-2, 1, 3)$ and $(-4, 11, 5)$ are	8,K3,CO1
	linearly dependent and find the relation between them. (ii) Show that the intersection of two subspaces of a vector space is a	8,K3,CO1
	subspace	

OR

b) (i) Let W_1 and W_2 be subspaces of a vector space V. Prove that V is the direct sum of W_1 and W_2 if and only if each vector in V can be uniquely written as $x_1 + x_2$ where $x_1 \in W_1$ and $x_2 \in W_2$.

11712

		(ii) Prove that $S = \{(1,2,3),(2,3,1)\}$ in $R^3(R)$ is linearly independent over R.	8,K3,CO1
12.	a)	(i) Test the matrix $A = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix}$ for diagonalizability.	8,K2,CO2
		(ii) Let V be an inner product space over F. Then for all $u, v \in V$. Show that $ \langle u, v \rangle \le u \cdot v $	8,K2,CO2
		OR	
	b)	Find an orthonormal basis of the inner product space $R^3(R)$ with the standard inner product, given the basis $\{(1, 0, 1), (0, 1, 1), (1, 3, 3)\}$ using Gram-Schmidt process. Also find the Fourier coefficients of the vector $(1, 1, 2)$ relative to the orthonormal basis.	16,K3,CO2
13.	a)	(i) Form the partial differential equation by eliminating the arbitrary functions f and g in $z = x^2 f(y) + y^2 g(x)$.	8,K3,CO3
		(ii) Find the singular solution of $z = px + qy + \sqrt{p^2 + q^2 + 1}$	8,K3,CO3
		OR	3,723,000
	b)	(i) Solve $x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$.	8,K3,CO3
		(ii) Solve $(D^2 + 3DD' + 2D^2)z = \sin(2x + y) + x$.	8,K3,CO3
14.	a)	Evaluate $\int_{0}^{\infty} \frac{dx}{(x^2 + a^2)(y^2 + b^2)}$ using Fourier cosine transform of e^{ax} and	16,K3,CO4
		e^{bx} .	
	1.)	OR	16 V2 CO4
	b)	Find the Fourier transform of $f(x)$ if $f(x) = \begin{cases} 1 - x & for x > 1 \\ 0 & for x < 1 \end{cases}$. Hence	16,K3,CO4
		deduce that $\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{4} dt = \frac{\pi}{3}.$	
15.	a)	(i) Find $Z^{-1} \left[\frac{8z^2}{(2z-1)(4z-1)} \right]$ using convolution.	8,K3,CO5
		(ii) Find $Z[n(n-1)(n-2)]$	8,K3,CO5
		OR	
*****	b)	Solve $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ with $y_0 = y_1 = 0$ using Z-transforms.	16,K3,CO5