Reg. No.				8			

Question Paper Code

11719

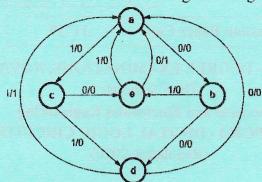
B.E./B.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022

Third Semester

Electrical and Electronics Engineering 20EEPC304 - DIGITAL LOGIC CIRCUITS

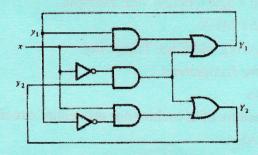
(Regulation 2020)

Max. Marks: 100 **Duration: 3 Hours**


		$PART-A (10 \times 2 = 20 Marks)$				
		Answer ALL Questions				
			Marks, K-Level,CO			
1.	Con	struct AND and OR gates using NAND gates.	2,K2,CO1			
2.	List	the advantages of CMOS.	2,K1,CO1			
3.	Defi	ne Combinational Logic Circuits with example.	2,K1,CO2			
4.						
5.						
6.						
7.	Define Race condition.					
8.		the analysis procedure of asynchronous sequential circuits.	2,K1,CO4			
9.		apare PLA and PAL.	2,K1,CO5			
10.		at are the advantages of hardware languages?	2,K1,CO5			
		多。特 等性。特別的主义是对人的关节的 组织的基础设施。				
		PART - B (5 × 13 = 65 Marks) Answer ALL Questions				
11.	a)	(i) Encode a binary word 1011 into seven bit even parity Hamming code.	08,K3,CO1			
		 (ii) Convert (0.6875)₁₀ to its equivalent binary. (iii) Convert hexadecimal number A.14 to its equivalent Octal number. OR 	02,K3,C01 03,K3,C01			
	b)	Explain the working of TTL and ECL logic families.	13,K2,CO1			
10		(i) Express F=A+B'C in Canonical SOP and Canonical POS form.	07,K2,CO2			
12.	a)	(ii) Simplify using K-Map $F(A,B,C,D) = \sum m(0,2,3,6,7) + d(8,10,11,15)$.	06,K3,CO2			
		OR	12 82 002			
	b)	Design a 4 bit Gray to Binary Code Converter.	13,K3,CO2			
13.	a)	Explain SR and D flip flop with necessary diagrams, state diagram, truth table, characteristics equation and excitation table.	13,K2,CO3			
		OR				

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

11719


Design a sequential circuit for the following state diagram.

13.K3.CO3

Explain Hazards and its types. Implement the Boolean function 13,K3,CO4 14. a) $F(A,B,C,D) = \sum m(0,2,6,7,8,10,12)$ without static hazard.

13,K3,CO4 Analyze the given asynchronous sequential diagram and draw maps, b) transition table and state table.

(i) Implement the following functions using PLA. 15. a) $F_1 = \sum m(1,2,4,6), F_2 = \sum m(0,1,6,7) \& F_3 = \sum m(2,6)$ 08,K3,CO5

(ii) Explain in detail about FPGA.

05,K2,CO5

Write a VHDL code for full adder in Behavioral and structural Model. b)

13,K2,CO5

PART C $(1 \times 15 = 15 \text{ Marks})$

Design an asynchronous sequential circuit with two inputs x1 and x2 15,K3,CO4 16. a) and one output Z. Initially, both inputs are equal to zero. When x1 or x2 becomes 1, the output Z becomes 1. When the second input also becomes 1, the output changes to 0. The output stays at 0 until the circuit goes back to the initial state.

Develop an asynchronous sequential circuit with 2 inputs X and Y and 15,K3,CO4 with one output Z. whenever Y is 1, input X is transferred to Z. When Y is zero, the output does not change for any change in X. Use SR FF for circuit implementation.