Reg. No.
Question Paper Code $\quad 11724$

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022
 Third Semester
 Electronics and Instrumentation Engineering
 (Common to Instrumentation and Control Engineering)
 20ESIT301 - DATA STRUCTURES AND ALGORITHMS

(Regulations 2020)
Duration: 3 Hours
Max. Marks: 100
PART - A ($10 \times 2=20$ Marks $)$
Answer ALL Questions

[^0]1. What do you mean by abstract data type? implementation of data structures.
2. Convert the following expression to post-fix: $(A+B)^{*} C$.

2,K3,CO2
4. Compare and contrast the differences between Stack and Queue ADTs. $\quad 2, \mathrm{~K} 2, \mathrm{CO} 2$
5. In a binary tree with n nodes, every node has an odd number of $2, \mathrm{~K} 2, \mathrm{CO} 3$ descendants. Every node is considered to be its own descendant. What is the number of nodes in the tree that have exactly one child?
6. While inserting the elements $71,65,84,69,67,83$ in an empty Binary Search Tree (BST) in the sequence shown, what will be the element in the lowest level.
7. Draw the adjacency list representation following Graph.
$2, \mathrm{~K} 2, \mathrm{CO} 3$

8. What is the maximurn number of edges in an acyclic undirected graph with n vertices?
9. Mention the significance using the hash function in hashing operations.

2,K2,CO5
10. Write short notes on the complexity analysis of the quick sort algorithm

2,K2,CO5

$$
\text { PART - B }(5 \times 13=65 \text { Marks })
$$

Answer ALL Questions
11. a) Write an algorithm to perform insertion and deletion of elements in a doubly circular linked list and algorithm for the displaying the contents of the list from the tail node.

OR

K1-Remember; K2 - Understand; K3-Apply; K4-Analyze; K5-Evaluate; K6 - Create
b) Write an algorithm to perform insertion at the end and deletion of elements at first in a singly circular linked list and algorithm for the displaying the contents of the list from the tail node.
12. a) Validate the following expression using stack by checking whether the
$13, \mathrm{~K} 3, \mathrm{CO}_{2}$ parenthesis is balanced using relevant diagram and explanation.
$\left\{1+\left(2^{*} a\right) / 3\right\}+\left[\left\{4^{*}(b+c) /(5-d-e)\right\} / f\right]$.

OR

b) Convert the given $((\mathrm{A}-\mathrm{B})+((\mathrm{C}+\mathrm{D})+(\mathrm{E} * \mathrm{~F}))$ expression in to postfix expression using stack and evaluate that post fix expression using stack with $A=80, B=3, C=10, D=E=2, F=4$. Represent by proper diagram the state of stack after each step.
13. a) Make a Binary Search Tree for the following sequence of numbers $45,32,90,34,68,72,15,24,30,66,11,50,10$ Traverse the Binary Search Tree created in Preorder, Inorder and Postorder.

OR

b) Write an algorithm for constructing an expression tree and explain how the given expression is converted to an expression tree.
$\left(\left(a^{*} b\right)+\left(c^{*} d\right)\right)-\left(e / f^{i}\right)$
14. a) Explain disjoint set with appropriate pseudo code and its implementation of find, makeset and union algorithms.

OR

b) Explain in detail about the graph data structure and its application, and list its different types with examples and also illustrate the different representation of graphs.
15. a) Given input $\{4371,1323,6173,4199,4344,9679,1989\}$ and a hash function $h(x)=X(\bmod 10)$, show the result of separate chaining hash table and open addressing hash table using quadratic probing.

OR

b) Write an algorithm for Quick Sort and Merge sort. Sort the following 13,K2,CO4
$13, K 3, \operatorname{CO} 5$
$13, K 3, C O 5$ list of characters using that algorithm $\mathrm{G}, \mathrm{H}, \mathrm{J}, \mathrm{A}, \mathrm{Z}, \mathrm{O}, \mathrm{N}, \mathrm{M}$.

$$
\text { PART - C }(1 \times 15=15 \text { Marks })
$$

16. a) Apply the Depth First Search and Breadth First Search Algorithm on 15,K3,CO4 the following graph and write the possible sequence of traversal using visual illustration for
i) ' 8 ' as the source vertex and
ii) ' 5 ' as the source vertex

OR
b) Explain the algorithms for finding minimum spanning tree
(i) Kruskal's algorithm.
8,K3,CO4
(ii) Prim's algorithm.

[^0]: Marks, K-Level,CO 2,Kl,COI
 2, $\mathrm{K} 2, \mathrm{CO} 1$

