Reg. No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code

11731

B.E/B.Tech - DEGREE EXAMINATIONS, NOV/DEC 2022

Second Semester

Civil Engineering

(Common to all branches)

20BSMA201 - ENGINEERING MATHEMATICS - II

(Regulations 2020)

Duration: 3 Hours

Max. Marks: 100

PART - A $(10 \times 2 = 20 \text{ Marks})$

	Answer ALL Questions $Answer ALL = 20 \text{ (Narks)}$					
1.	Find the directional derivative of the function $\emptyset = x^3yz$ at the point $(1, 4, 1)$.	Marks, K-Level,CO 2,K2,CO1				
2.	Prove that $\vec{F} = yz\vec{i} + zx\vec{j} + xy\vec{k}$ is irrotational.	2,K1,CO1				
3.	Reduce the equation $(x^2D^2 - xD + 4) y = x^2 \sin(\log x)$ into an ordinary differential equation with constant coefficients.					
4.	$Solve \frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 13y = 0.$	2,K3,CO2				
5.	Show that an analytic function with constant imaginary part is constant.	2,K1,CO3				
6.	Find the fixed points of the transformation $\mathbf{w} = \frac{6\mathbf{z} - 9}{\mathbf{z}}$.	2,K2,CO3				
7.	Discuss the nature of singularities of	2,K1CO4				
8.	Find the Taylor's series for $f(z)$ =sinz about $z = \frac{\pi}{4}$.	2,K2,CO4				
9.	If $L[f(t)]=F(s)$, then prove that $L[f(e^{at}f(t))]=F(s-a)$.	2,K1,CO5				
10.	Find L(cos ² 2t).	2,K2,CO5				
	PART - B (5 × 16 = 80 Marks) Answer ALL Questions					
11.	a) Verify Gauss Divergence theorem for $\vec{F} = 4xz\vec{i} - y^2\vec{j} + yz\vec{k}$ over the cube bounded by $x = 0$, $x = 1$, $y = 0$, $y = 1$, $z = 0$, $z = 1$.	16,K3,CO1				
	OR	9 F2 CO1				
	b) (i) Find a and b so that the surfaces $ax^3 - by^2z - (a+3)x^2 = 0$ and	8,K2,CO1				
	$4x^2y - z^3 - 11 = 0 \text{ cut orthogonally at the point } (2, -1, -3).$					
K1 -	Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create	11731				

- (ii) Verify Green's theorem in a plane for $\int [(3x^2 8y^2)dx + (4y 6xy)dy]^{-8,K2,COI}$ where C is the boundary of the region defined by the lines x = 0, y = 0 and x + y = 1.
- a) (i) Solve $(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 2\sin[\log(1+x)]$. 8,K3,CO2
 - (ii) Solve $(x^2D^2 xD + 1) y = x \log x$. 8,K3,CO2

- (i) Solve $(D^2 + a^2)y = \tan ax$, by using method of variation of parameters.
 - (ii) Solve $x^2 \frac{d^2 y}{dx^2} 4x \frac{dy}{dx} + 4y = x^2 + \frac{1}{x^2}$. 8,K3,CO2
- (i) If f(z) is an analytic function of z, 13. 8,K2,CO3 $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2}\right) |f(z)|^2 = 4|f'(z)|^2.$
 - (ii) Determine the analytic function w = u + iv if 8,K3,CO3 $u = e^{2x}(x\cos 2y - y\sin 2y).$

- (i) Find the image in the w plane of the infinite strip $\frac{1}{4} \le y \le \frac{1}{2}$ under 8,K2,CO3 the transformation $w = \frac{1}{2}$
 - (ii) Find the bilinear map which maps the points z = 0, -1, i into 8,K2,CO3 $w = i, 0, \infty$. Also find the image of the unit circle of the z – plane.
- 14. a) (i) Using Cauchy's integral formula, evaluate $\int_{0}^{z^2} \frac{z^2}{(z-1)^2(z+2)} dz$ where 8,K3,CO4 C is |z| = 3.
 - (ii) Find the Laurent's series function $f(z) = \frac{7z-2}{z(z-2)(z+1)}$ in the interval 8, K2, CO4 1 < |z + 1| < 3.

(i) Evaluate by using Cauchy's residue theorem $\int_{C}^{z} \frac{z+1}{(z-3)(z-1)} dz$ 8,K3,CO4 where C is the circle |z| = 2.

(ii) Evaluate
$$\int_{0}^{2\pi} \frac{d\theta}{2 + \cos \theta}$$
 using contour integration.

8,K3,CO4

- 15. a) (i) Find the Laplace transform of $f(t) = \begin{cases} t & \text{for } 0 < t < a \\ 2a t, & \text{for } a < t < 2a \end{cases}$ and 8,K2,C05 f(t + 2a) = f(t).
 - (ii) FindL[$t^2e^{-3t}\sin 2t$].

8,K2,CO5

8,K2,CO5

OR

- b) (i) Using Laplace transform, solve $\frac{d^2y}{dt^2} + 4y = \sin 2t$ given y(0) = 3, 8,K3,C05 y'(0) = 4.
 - (ii) Find $L^{-1}\left[\frac{s^2}{(s^2+4)^2}\right]$, using convolution theorem.