Reg. No),
---------	----

Question Paper Code

11740

B.E/B.Tech - DEGREE EXAMINATIONS, NOV/DEC 2022

Second Semester

Artificial Intelligence and Data Science

(Common to Computer Science and Engineering, Information Technology & M.Tech. -

Computer Science and Engineering)

20BSPH203 - PHYSICS FOR INFORMATION SCIENCE

(Regulations 2020)

Duration: 3 Hours

Max. Marks: 100

PART - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions

		Marks, K-Level,CO
1.	What is relaxation time?	2,K1,CO1
2.	What is Fermi energy level? Give its significance.	2,K2,CO1
3.	Mention the classification of semiconductors based on purity.	2,K1,CO2
4.	How do you increase the conductivity of semiconductors?	2,K2,CO2
5.	Define drift and diffusion current.	2,K1,CO3
6.	What happens to the magnetic flux when a diamagnetic material is kept in a magnetic field?	2,K2,CO3
7.	Calculate the wavelength emitted by a semiconductor whose band gap energy is 1.44 eV.	2,K2,CO4
8.	Define critical temperature.	2,K1,CO4
9.	What are single electron phenomena?	2,K1,CO6
10.	How does Fermi energy vary with size?	2,K1,CO6

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

a) Derive an expression for the density of states and based on that 13, K2, CO1 11. calculate the carrier concentration in metals.

OR

- 13,K2,CO1 b) Deduce mathematical expression for electrical conductivity and thermal conductivity of a conducting material and hence obtain Wiedemann-Franz law.
- Obtain an expression for the carrier concentration of electrons in the 13,K2,CO2 12. a) conduction band of an n-type semiconductor.

OR

11740 K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

		OR	
	b)	Obtain an expression for the carrier concentration of holes in the valence band of a p-type semiconductor.	13,K2,CO2
13.	a)	Describe ferromagnetic domain theory. Also, explain the different types of energy involved in domain growth. OR	13,K2,CO3
	b)	Derive an expression for the Hall coefficient for an n-type semiconductor. Also, deduce the Hall voltage in terms of Hall coefficient.	13,K2,CO3
14.	a)	(i) List out the differences between Type-I and Type-II superconductors.	8,K2,CO4
		(ii) Write short notes on: Isotope effect, Persistent current. OR	5,K2,CO4
	b)	Explain in detail carrier generation and recombination in semiconductors.	13,K2,CO4
15.	a)	Describe carbon nanotubes with types of structures, properties and applications.	13,K2,CO6
		OR	
	b)	 Write short notes on: a) Quantum structures. b) Tunneling mechanism. c) Band gap energy of nanomaterials. 	6,K2,CO6 3,K2,CO6 4,K2,CO6
		PART - C (1 × 15 = 15 Marks)	
16.	a)	Explain the principle, construction and working of quantum dot lasers. Also, list out the advantages, drawbacks and applications of it.	15,K2,CO5
		OR	
	b)	Describe the principle, construction and working of solar cells.	15,K2,CO5

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create 117402