

Reg. No.			
----------	--	--	--

Question Paper Code

11751

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022 (MARCH 2023)

First Semester

Computer Science and Business Systems 20BSMA102 - DISCRETE MATHEMATICS

(Regulations 2020)

Duration: 3 Hours

Max. Marks: 100

$PART - A (10 \times 2 = 20 Marks)$

Answer ALL Questions

	THE WOLL THE COORDING	
		Marks, K-Level, CO
1.	Express using logical connectives, "you access the internet from campus only if you are a computer science major or you are not a freshman".	2,K3,CO1
2.	Show that $\neg(p \land q) \Rightarrow (\neg p \lor \neg q)$.	2,K2,CO1
3.	How many 16-bit strings are there containing exactly 5 zeros?	2,K2,CO2
4.	Find the recurrence relation for $y_n = A \cdot 2^n + B \cdot 3^n$.	2,K3,CO2
5.	What is the Boolean expression for NAND gate?	2,K1,CO3
6.	Show that in a Boolean Algebra, $a \le b \Rightarrow a + (b \cdot c) = b \cdot (a + c)$.	2,K2,CO3
7.	Draw a graph with 5 vertices A,B,C,D, E such that $deg(A) = 3$, B is an odd vertex, $deg(C) = 2$, D and E are adjacent.	2,K2,CO4
8.	Define chromatic number of a graph G with example.	2,K1,CO4
9.	Define a group with proper example.	2,K1,CO5
10.	Define a Ring with Example.	2,K1,CO5
PART - B (5 × 16 = 80 Marks) Answer ALL Questions		
11.	a) (i) Construct the truth table for the following	8,K2,CO1
	$\neg (P \lor (Q \land R)) \leftrightarrow ((P \lor Q) \land (P \lor R)).$ (ii) Show that $((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$ is a tautology. OR	8,K3,COI
	b) (i) Find the CNF & DNF of $P \to ((P \to Q) \land (\neg (\neg Q \lor \neg P)))$ using laws of logic.	8,K3,CO1
	(ii) Find the PCNF & PDNF of $P \rightarrow (Q \land P) \land (\neg P \rightarrow (\neg Q \land \neg R))$ using laws of logic.	8,K3,CO1
12.	a) Find the recurrence formula for the Fibonacci sequence of numbers and obtain its solution.	16,K3,CO2
K1 -	- Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create	11751

- State the Pigeon hole principle and also prove that there exists a 16,K3,C02 b) positive integer n such that m divides $2^n - 1$ where m being a positive odd integer.
- 13. a) (i) Prove that in a Boolean Algebra, 8,K3,CO3 $(a+b')\cdot(b+c')\cdot(c+a')=(a'+b)\cdot(b'+c)\cdot(c'+a).$ (ii) Prove that in a Boolean Algebra, a + a'bc' + (b + c)' = a + c'. 8, K3, CO3 OR
 - Minimize the following Boolean function using K-Map. b) 16,K3,CO3 F = A'B'C' + A'B'C + AB'C + ABC'.
- (i) Check whether the following graphs are isomorphic or not. 14. a) 8,K3,CO4

(ii) Consider the following digraph. Use its adjancy matrix to find 8,K3,CO4 how many paths of length 3 from V1 to V2.

OR

- (i) Prove that the maximum number of edges in a simple b) disconnected graph G with n vertices and k components is (n-k)(n-k+1)
 - (ii) Prove that a graph is a tree if and only if there is a unique simple path between every pair of vertices.
- 15. a) State and Prove Fundamental theorem of Group homomorphism. 16,K3,CO5 OR
 - b) State and Prove Lagrange's Theorem. 16,K3,CO5