Question Paper Code	11752

B.E./B.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022 (MARCH 2023) Artificial Intelligence and Data Science

(Common to all branches except Computer Science and Business Systems)

20BSPH101 - ENGINEERING PHYSICS

(Regulations 2020)
Duration: 3 Hours
PART - A $(10 \times 2=20$ Marks $)$
Answer ALL Questions
Max. Marks: 100

Marks, K-Level,CO

1. Define Crystal lattice and Unit cell.
2. Copper has FCC structure and its lattice parameter is $3.6 \AA$. Find the atomic $2, \mathrm{~K} 2, \mathrm{COI}$
radius.
3. Illustrate the essential parts of the Laser system.
2,Kl,CO2
4. What is population inversion? $2, \mathrm{Kl}, \mathrm{CO} 2$
5. Differentiate between the single mode and multimode fiber. \quad 2,K2,CO3
6. What is meant by attenuation? $2, \mathrm{Kl}, \mathrm{CO} 3$
7. Discuss the types of modulus of elasticity. $\quad 2, \mathrm{Kl}, \mathrm{CO} 4$
8. Define the Poisson's ratio. $2, K 1, C O 4$
9. Define coefficient of thermal conductivity and mention its units. $2, K 1, C O 6$
10. What is bimetallic strip? Give its use.
2,Kl,CO6

PART - B ($5 \times 13=65$ Marks $)$
Answer ALL Questions
11. a) Determine the atomic radius, coordination number and packing factor $13, \mathrm{~K} 2, \mathrm{COI}$ for $S C$ and $B C C$ structure.

OR

b) Explain in detail about the Czocharalski and Bridgeman melt growth $13, \mathrm{~K} 2, \mathrm{COI}$ techniques.
12. a) Explain the modes of vibrations of CO_{2} molecules. Describe the $13, \mathrm{~K}, \mathrm{CO} 2$ construction and working of CO_{2} Laser with necessary diagram.

OR
b) Derive the expression for the Einstein's coefficients of spontaneous $13, \mathrm{~K} 2, \mathrm{CO} 2$ and stimulated emissions.
13. a) Derive the numerical aperture and acceptance angle of an optical fiber. 13,K2,CO3 OR
K1-Remember; K2 - Understand; K3-Apply; K4-Analyze; K5-Evaluate; K6 -Create
b) Discuss the various types of optical fiber.
14. a) Explain how Torsion pendulum is used to determine the moment of $13, \mathrm{~K} 2, \mathrm{CO} 4$ inertia and rigidity modulus of the material of a thin wire.

OR
b) Explain an experiment to determine Young's modulus of the material $13, \mathrm{K2}, \mathrm{CO} 4$ of the bar by non-uniform bending.
15. a) Explain the determination of thermal conductivity of poor conductor 13,K2,CO6 by Lee's disc method.

OR

b) Explain Forbe's method to determine the thermal conductivity of a $13, K 2, C O 6$ good conductor.

$$
\text { PART }-\mathrm{C}(1 \times 15=15 \text { Marks })
$$

16. a) Derive Planck's law for blackbody radiation and hence deduce Wien's $15, K 2, \operatorname{CO}$ displacement law and Rayleigh - Jean's law.

OR

b) Derive Schrodinger's time-independent and time dependent wave $15, K 2, \mathrm{CO}$ equations.

