Reg. No. \square

Question Paper Code 11755

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022 (MARCH 2023)

First Semester
Computer Science and Business Systems

20ESEE105-PRINCIPLES OF ELECTRICAL ENGINEERING

(Regulations 2020)
Duration: 3 Hours
Max. Marks: 100

> PART - A $(\mathbf{1 0} \times \mathbf{2}=\mathbf{2 0}$ Marks $)$
> Answer ALL Questions
Marks,

1. Compare between Series and Parallel resistive Circuit.
2. A 100 V lamp has a hot resistance of 250Ω. Find the current taken by the 2,KI,COI lamp and its power rating in watts. Also the energy it will consume in 24 hours.
3. What is the procedure for verifying Thevenin equivalent circuit?

2,K1,CO2
4. Show the steps to convert delta to star network. $2, \mathrm{~K}, \mathrm{CO} 2$
5. Define true power and apparent power. $2, \mathrm{Kl}, \mathrm{CO} 3$
6. The maximum current in a sinusoidal a.c circuit is 10 A . What is the $2, K 1, C O 3$
instantaneous current at 45° ?
7. List the uses of dielectrics. \quad 2,KI,CO4
8. Outline electromechanical energy conversion. 2,K2,CO4
9. What is meant by integrating type instrument and give example? 2,K1,CO5
10. What is the necessity of earthing? $2, K 1, \operatorname{CO5}$

PART - B ($5 \times 13=65$ Marks $)$

Answer ALL Questions
11. a) Calculate the current supplied by the DC source in the circuit shown $13, \mathrm{~K}, \mathrm{CO} 1$ below.

K1 - Remember; K2 - Understand; K3 - Apply; K4-Analyze; K5-Evaluate; K6 - Create

OR

b) By using the mesh current method, show the current supplied by each $13, \mathrm{~K}, \mathrm{CO} 1$ battery.

12. a) Using Norton's equivalent circuit, solve for load voltage and load $13, \mathrm{~K}, \mathrm{CO} 2$ current.

OR
b) Calculate the value of resistance by using maximum power transfer $13, \mathrm{~K} 2, \mathrm{CO} 2$ theorem.

13. a) Extend the operation of RC series AC circuit with relevant phasor diagram and the formulas for phase angle, impedance, admittance and power.

OR

b) A Coil having a resistance of 7 ohm and an inductance of 31.8 mH is connected in $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Identify (i) the circuit current (ii) Phase angle (iii) Power factor (iv) power consumed and (v) voltage drop across resistor and inductor.
14. a) (i) Demonstrate the capacitance of capacitors connected in series and 8,K2,CO4 parallel circuits.
(ii) Summarize the discharging of capacitor with neat waveform.

OR
5,K2,CO4
b) Explain the transformer ratio and emf equation of the transformer. 13,K2,CO4
15. a) Explain the principle, working and measurement of single phase $13, K 2, \operatorname{CO}$ wattmeter.

OR

b) With a basic functional block diagram explain the measurement of $13, K 2, \operatorname{COS}$ temperature.

$$
\text { PART - C }(1 \times 15=15 \text { Marks })
$$

16. a) A voltage $v(t)=100 \sin 314 t$ is applied to a series circuit consisting of $15, K 3, C O 3$ 10 ohm resistance, 0.0318 H inductance and a capacitor of $63.6 \mu \mathrm{~F}$. Find (i) expression for $i(t)$ (ii)phase angle between voltage and current (iii) power factor (iv)active power consumed (v) peak value of the pulsating power.

OR

b) Outline Superposition Theorem and infer the current in the load and 15, $\mathrm{K} 2, \mathrm{CO} 2$ current supplied by the battery.

