24-04-2023

Reg. No.	
----------	--

Question Paper Code 11794

B.E./ B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2023

Seventh Semester

Electrical and Electronics Engineering

(Common to Electronics and Instrumentation Engineering)

EE8691 - EMBEDDED SYSTEMS

(Regulations 2017)

Duration: 3 Hours

Max. Marks: 100

$PART - A (10 \times 2 = 20 Marks)$

Answer ALL Questions

1.	Mention the steps involved in designing an embedded system.	Marks, K-Level, CO 2,K1,CO1
2.	What is meant by Watch-dog timer? List any two applications.	2,K1,CO1
3.	Draw the data format of serial communication protocol which finds application in automobiles.	2,K1,CO2
4.	What is the purpose of RS232 protocol?	2,K1,CO2
5.	Differentiate Sequential programming model and concurrent programming model.	2,K2,CO3
6.	State the different modeling in EDLC.	2,K1,CO3
7.	Differentiate Task and Process.	2,K2,CO4
8.	Classify the scheduling algorithm in RTOS.	2,K1,CO4
9:	Mention any four applications of Embedded systems.	2,K1,CO5
10.	List the different parameters required for selecting a processor for an ATM application.	2,K1,CO5

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) Explain the structural units of an embedded processor with neat 13, K2,CO1 diagram.

OR

- b) Elaborate the functions and states of various timing and counting 13, K2,CO1 devices.
- 12. a) Illustrate the following communication protocols with a neat control 13,K2,CO2 frames (i) I²C and (ii) CAN Bus.

OR

b) Discuss in detail how the SPI protocol interacts with other devices. *13,K2,CO2*

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 11794

13.	a)	Describe the various steps of EDLC using a nice illustration.	13,K2,CO3
		OR	
,	b)	With a neat illustration, describe the various modeling in EDLC.	13,K2,CO3
14.	a)	Explain in detail about the concepts of process and thread in RTOS.	13,K2,CO4
		OR	12 12 001
	b)	Elaborate how the different types of semaphore are helpful in accessing a critical section in RTOS.	13,K2,CO4
15.	a)	Discuss the smart card case study via a beautiful drawing.	13,K2,CO5
		OR	
	b)	Using a simple graphic, explain the functionalities of a digital camera.	13,K2,CO5
1		PART - C (1 × 15 = 15 Marks)	

4 ⁴

16. a) Identify the protocol that can be used as master-slave to establish the ^{15,K3,CO2} communication between two devices and explain its mechanism.

OR

b) Illustrate the functionalities of a washing machine using a simple ^{15,K3,CO5} graphical view.