04-2023	Reg. No.		
¥			

Question Paper Code

11795

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2023

Sixth Semester

Instrumentation and Control Engineering IC8651 - ADVANCED CONTROL SYSTEM

(Regulations 2017)

Duration: 3 Hours

PART-A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions

Max. Marks: 100

....

1.	Define State and state variable.	K-Level,CO 2,K1,CO1
2.	Write the state model of n th order system.	2,K1,CO1
3.	Identify the need for state observer in complex control problem.	2,K2,CO2
4.	State the condition for controllability of Gilbert's method.	2,K1,CO2
5.	Illustrate the stability criterion for sampled data control systems.	2,K2,CO3
6.	Mention the merits and demerits of sampled data control systems.	2,K1,CO3
7.	In describing function analysis how the stability of nonlinear systems is	2,K1,CO4
	determined.	
8.	Write short notes on phase plane method.	2,K2,CO4
9.	Describe the role and list the application of optimal control.	2,K2,CO5
10.	Identify the formation of optimal control problems.	2,K2,CO5

PART - B $(5 \times 13 = 65 \text{ Marks})$ · Answer ALL Questions

11.	a)	Construct	the state	model	of mec	hanical	system	shown	in	fig
-----	----	-----------	-----------	-------	--------	---------	--------	-------	----	-----

13,K3,CO1

OR

11795 K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 1

b) Explain the State model of a system to controllable and phase variable 13,K3,CO1 form.

$$\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \\ \dot{\mathbf{x}}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & -3 & 0 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{u} \end{bmatrix} ; \quad \mathbf{y} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix}$$

12. a)

Consider the linear system described by the transfer function $\frac{y(s)}{10} = \frac{10}{10}$

U(S) S(S+1)(S+2)

Design a feedback controller with a state feedback so that the closed loop poles are placed at -2, $-1 \pm j$.

OR

b) Consider the systems with the transfer function

$$\frac{y(s)}{U(s)} = \frac{9}{s^2 - 9}$$

(i) Calculate k so that the control law u=-kx. places the closed loop 6,K3,CO2 poles at -3 + j3.

(ii) Design a full order observer such that the observer error poles are 7,K3,CO2 located at -6+j6.

13. a) Compute the Z-transform of the given sequence (i) $f(k) = k a^{(k-1)}$ (ii) Compute the inverse Z-transform $F(z) = \frac{3z^2+2z+1}{2z+1}$

Compute the inverse Z-transform
$$F(z) = \frac{32^2 + 22 + 1}{z^2 + 3Z + 2}$$
 6,K3,CO3

- b) Estimate the stability of the sampled data control systems represented 13,K3,CO3 by the given characteristics equations(Jury's stability Test)F(z) = z^4 - $1.7z^3+1.04z^2-0.268z+0.024=0$
- 14. a)
- Employ the describing function of Saturation Nonlinearity. OR
- 13,K2,CO4

13,K3,CO2

b) Consider a system with an ideal relay as shown in fig. determine the 13,K3,C04 singular points.Construct phase trajectory, corresponding to initial conditions c(0) = 2, C(0) = 1. Take r = 2 volts, and M = 1.2 volts.

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create 11795

15.	a)	Explain about optimal state regulator design.	13,K2,CO5
		OR	
	b)	Describe about Lyapunov equation with Lyapunov stability theorem.	13,K2,CO5
,		PART - C (1 × 15 = 15 Marks)	
16.	a)	Explain about Matrix Ricatti equations of optimal control design.	15,K2,CO4
		OR	

b) Apply the design optimal controller with any one example. *15,K2,C05*

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

3

11795