## Question Paper Code 11816

## B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2023 <br> Sixth Semester <br> Mechanical Engineering ME8096 - GAS DYNAMICS AND JET PROPULSION

(Regulations 2017)
(Use of approved gas table is permitted)
Duration: 3 Hours
Max. Marks: 100

## PART - A ( $10 \times 2=\mathbf{2 0}$ Marks)

Answer ALL Questions

| 1. Define Mach number. | Marks, <br> K-Level, CO <br> 2,Kl,COI |
| :--- | :--- | :--- |
| 2. Distinguish between nozzle and diffuser. | $2, \mathrm{~K} 2, \mathrm{COI}$ |
| 3. Give assumption made of Rayleigh flow. | $2, \mathrm{Kl}, \mathrm{CO} 2$ |
| 4. Define critical condition in Fanno flow. | $2, \mathrm{Kl}, \mathrm{CO} 2$ |
| 5. Give the difference between normal and oblique shock wave. | $2, \mathrm{~K} 2, \mathrm{CO}$ |
| 6. Mention the useful applications of shock wave. | $2, \mathrm{Kl,CO3}$ |
| 7. Give the components of a turbojet engine. | $2, \mathrm{Kl}, \mathrm{CO}$ |
| 8. Define propulsive efficiency. | $2, \mathrm{Kl}, \mathrm{CO} 4$ |
| 9. Classify the rocket engines. | $2, \mathrm{~K} 2, \mathrm{CO}$ |
| 10. State any 4 advantages of rocket engine compared to aircraft engines. | $2, \mathrm{Kl}, \mathrm{CO} 5$ |

## PART - B ( $5 \times 13=65$ Marks) <br> Answer ALL Questions

11. a) Air ( $\gamma=1.4, \mathrm{R}=287.43 \mathrm{~J} / \mathrm{kgK})$ enters a straight axis symmetric duct at $300 \mathrm{~K}, 3.45 \mathrm{bar}$ and $150 \mathrm{~m} / \mathrm{s}$ and leaves it at $277 \mathrm{~K}, 2.058 \mathrm{bar}$ and 260 $\mathrm{m} / \mathrm{s}$. The area of cross section at entry is $50 \mathrm{~cm}^{2}$. Assuming adiabatic flow determine:
(i) Stagnation temperature (ii) Maximum velocity (iii) Mass flow rate and (iv) Area of cross section at exit.

## OR

b) Air flowing in a duct has a velocity of $300 \mathrm{~m} / \mathrm{s}$, pressure 1001 bar,

13,K3,COI temperature 290 K . Taking $\gamma=1.4, \mathrm{R}=287 \mathrm{~J} / \mathrm{kgK}$. Determine (i) stagnation pressure and temperature (ii) Velocity of sound in the dynamic and stagnation conditions. (iii) Stagnation pressure assuming constant density.

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create
12. a) The conditions of a gas in a combustor entry are $\mathrm{p}_{1}=0.343$ bar, $\mathrm{T}_{1}=$ $310 \mathrm{~K}, \mathrm{c}_{1}=60 \mathrm{~m} / \mathrm{s}$. Determine the Mach number, pressure, temperature and velocity at the exit, if the increase in stagnation enthalpy of the gas between entry and exit is $1172.5 \mathrm{~kJ} / \mathrm{kg}$. Take $\mathrm{C}_{\mathrm{p}}=$ $1.005 \mathrm{~kJ} / \mathrm{kgK}, \gamma=1.4$.

## OR

b) A Circular duct passes $8.25 \mathrm{~kg} / \mathrm{s}$ of air at exit mach number of 0.5 . The entry pressure and temperature are 345 kPa and $38^{\circ} \mathrm{C}$ respectively and the coefficient of friction is 0.005 . if the mach number at the entry is 0.15 , Determine (i) The diameter of the duct, (ii) The length of the duct, (iii) Pressure and Temperature at exit, (iv) Stagnation Pressure loss.
13. a) The state of a gas $(\gamma=1.3, \mathrm{R}=0.469 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K})$ upstream of a normal shock wave is given by the following data:
$\mathrm{M}_{\mathrm{x}}=2.5, \mathrm{p}_{\mathrm{x}}=2 \mathrm{bar}, \mathrm{T}_{\mathrm{x}}=275 \mathrm{~K}$
Calculate the Mach number, pressure, temperature and velocity of the gas downstream of the shock; Check the calculated values with those given in the gas tables.

## OR

b) A gas $(\gamma=1.3)$ at $\mathrm{p}_{1}=345 \mathrm{mbar}, \mathrm{T}_{1}=350 \mathrm{~K}$ and $\mathrm{M}_{1}=1.5$ is to be isentropically expanded to 138 mbar. Determine a) The deflection angle b) Final Mach number and c) The temperature of the gas.
14. a) Explain the working principle of a ramjet engine with neat sketch. Also state its advantages and disadvantages over turbojet engine.

## OR

b) Describe the working principle of turboprop and turbojet engines with neat sketch.
15. a) Explain the various types of chemical rocket engines with neat sketch.

## OR

b) What is the function of propellant feed system? Explain the Gas pressure feed system and turbo pump feed system with neat sketch.

## PART - C ( $\mathbf{1} \times \mathbf{1 5}=\mathbf{1 5}$ Marks)

16. a) Air at $\mathrm{p}_{0}=10 \mathrm{bar}, \mathrm{T}_{0}=400 \mathrm{~K}$ is supplied to a 50 mm diameter pipe. The friction factor for the pipe surface is 0.002 . If the Mach number changes from 3.0 at the entry to 1.0 at the exit determine: (i) The length of the pipe (ii) The mass flow rate.

## OR

b) A jet of air at a Mach number of 2.5 is deflected inwards at the corner 15,K3,CO3 of a curved wall. The wave angle at the corner is $60^{\circ}$. Determine the deflection angle of the wall, pressure and temperature ratios and final Mach number.

