- AN

Reg. No.

Question Paper Code 11838

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2023
 Sixth Semester
 Mechanical Engineering
 (Common to Production Engineering)
 ME 8692 - FINITE ELEMENT ANALYSIS

(Regulations 2017)

Duration: 3 Hours

Max. Marks: 100

> Answer ALL Questions
> PART - A $(\mathbf{1 0} \times \mathbf{2}=\mathbf{2 0}$ Marks $)$

Marks,
K-Level, CO 2,Kl,COI

2,KI,COI
2,K1,CO2
2,K1,CO2
2,K2,CO3
2,Kl,CO3
2,K1,CO5
2,K2,CO4
2,K2,CO6
2,K2,CO6

PART - B ($5 \times 13=65$ Marks $)$

Answer ALL Questions
11. a) Find the deflection at the centre of a simply supported beam of span length "l" subjected to uniformly distributed load throughout its length as shown in figure. 1 using a) point collocation method, b) sub-domain method, c) Least squares method, and d) Galerkin's method.

$$
\omega / \mathrm{m}
$$

Fig. 1

OR

b) (i) Briefly describe the general steps of the finite element method.
(ii) Enumerate the advantages, disadvantages and applications of FEM.

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create 11838
12. a) For a tapered plate of uniform thickness $t=10 \mathrm{~mm}$ as shown in figure.2. Find the displacements at the nodes by forming in to two element model. The bar has mass density $\rho=7800 \mathrm{Kg} / \mathrm{m}^{3}$ Young's modulus $\mathrm{E}=2 \times 10^{5} \boldsymbol{M N} / \boldsymbol{m}^{2}$. In addition to self weight the plate is subjected to a point load $\mathrm{P}=10 \mathrm{KN}$ at its centre. Also determine the reaction force at the support.

Fig. 2

OR

b) Find the deflection at the point load and the slopes at the ends for the steel shaft which is simply supported at the bearing A and B as shown in Figure. 3.

Fig. 3
13. a) Evaluate the element stiffness matrix for the triangular element shown in Figure.4. Under plane stress conditions. Assume the following values $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$

Fig. 4

K1 - Remember; K2 - Understand; K3 - Apply; K4-Analyze; K5 - Evaluate; K6 - Create

OR

b) Compute the element matrix and vectors for the element shown in 13,K3,CO3 Figure.5. When the edges 2-3 and 3-1 experience convection heat loss.

Fig. 5
14. a) Calculate the element stiffness matrix and the thermal force vector for the axisymmetric triangular element shown in figure.6. The element experiences a $15^{\circ} \mathrm{c}$ increase in temperature. The co-ordinates are in mm . Take $\alpha=10 \times 10^{-6} /{ }^{0} \mathrm{c} ; \mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \boldsymbol{v}=0.25$.

Figure. 6
OR
b) Derive the shape function for the constant strain triangular element.
15. a) Evaluate the Cartesian coordinate of the Point P which has local coordinates $\varepsilon=0.6, \eta=0.8$ as shown in Figure. 7

Fig. 7
OR
b) Derive the shape functions for 4-noded rectangular element by using 13,K2,CO5 natural coordinate system.

PART - C ($1 \times 15=15$ Marks $)$

16. a) Consider the isoparametric quadrilateral element with nodes 1 to 4 at 15,K3, CO6 $(5,5),(11,7),(12,15)$, and $(4,10)$ respectively. Estimate the Jacobian and strain displacement matrix.

OR

b) Evaluate the integral by two point Gausian Quadrature.

$$
\mathrm{I}=\int_{-1-1}^{1} \int_{1}^{1}\left(2 x^{2}+3 x y+4 y^{2}\right) d x d y
$$

The gauss points are +0.57735 and -0.57735 each of weight 1.000 .

