	Reg.	No.							
Question Paper C	Code	11	841						
B.E. / B.Tech DEGREE EX	AMINA	ATION	S, A	PRI		MAY	Y 20	23	
Sixt	th Seme	ster							
Mechanic	al Engi	neerin	g						
ME8693 - HEAT A	ND MA	ASS TI	RAN	SFE	R				
(Regul	lations 2	.017)							
(Use of HMT d	ata book	c is peri	nitte	d)					
Duration: 3 Hours						Max	Ma	irks:	100
PART - A (1	$ 0 \times 2 =$	20 Ma	rks)						
Allswei	ALL Qu	lestions							Marks,
	1	. 1						K	K-Level, CO
1. Write down the three dimensional coordinate system	neat cor	nauctio	n eq	uatio	ns n	n Ca	artes	lan	2,81,001
2. Define critical thickness of insulation	n with it	ts signi	fican	ce.					2,K1,CO1
3. State Newton's law of cooling.									2,K1,CO2
4. Define the velocity and thermal bour	ndary la	yers.							2,K1,CO2
5. State the difference between filmwise and dropwise condensation.							2,K1,CO3		
6. What is compact heat exchanger?							2,K1,CO4		
7. Define emissivity, absorptivity and reflectivity.								2,K1,CO5	
8. Distinguish between Opaque body and white body.								2,K2,CO5	
9. State Fick's law of diffusion and give its expression.								2,K1,CO6	
10. What is Sherwood number?									2,K1,CO6
PART - B (5 Answer	5 × 13 = ALL Qu	65 Ma	rks)						
11. a) Derive general heat conduction	equation OR	n for pl	ane	wall.					13,K2,CO1
 b) The temperatures on the two so (k = 48 W/m°C) having a uniformation 10⁶ W/m³, are 180°C and 120°C the following: (i) The temperature of the following: 	surfaces orm vol C. Negle	of a 2 umetric ecting t	25 m hea he er	m th t gen nd eff	ick erat fects	stee ion , de	of 30 term	ate, 0 x ine	13,K3,COI
(i) The temperature distribution (ii) The value and position of th (iii) The flow of heat from each	e maxin surface	num ter of the	e, nper plate	ature	, and	d			
12. a) (i) Define Reynold's, Nusselt ar(ii) Differentiate between Natur	nd Pranc al & Fo	Itl num rced co	bers. nvec	tion.					6,K2,CO2 7,K2,CO2
K1 – Remember; K2 – Understand; K3 – Apply; K	K4 – Anal <u>,</u> 1	yze; K5 -	- Eva	luate;	K6 -	Cre	ate	1	1841

- b) A 10 cm spherical steel ball at 260°C is immersed in air at 90°C. 13,K3,CO2 Estimate the rate of convective heat loss.
- 13. a) An aluminum pan 15cm diameter is used to boil water and the water 13,K2,CO3 depth at the time of boiling is 2.5cm. The pan is placed on an electric stove and the heating element raises the temperature of the pan to 110°C. Calculate the power input for boiling and the rate of evaporation. Take C $_{sf}$ = 0.0132.

OR

- Explain the various stages of boiling and describe it with neat sketch. b)
- 14. Define the following a) (i) Black body (ii) Grey body (iii) Opaque body (iv) White body (v) Specular reflection (vi) Diffuse reflection.

OR

- b) Two large parallel plates of 1.5 m x 1.5 m spaced 0.55 m apart in a 13,K3,CO5 very large room whose walls are at 30°C. The plates are at 950°C and 450°C with emissivities 0.25 and 0.45 respectively. Estimate the net heat transfer to each plate and to the room.
- 15. a) (i) Explain Fick's law of diffusion. (ii) Write short-notes on evaporation process in the atmosphere.
 - OR
 - 13.K2.CO6 b) An open pan 20 cm diameter and 8 cm deep contains water at 25°C and is exposed to dry atmospheric air. Estimate the diffusion coefficient of water in air, if the rate of diffusion of water is $8.54 \text{ x}10^{-4} \text{ kg/ hr.}$

PART - C $(1 \times 15 = 15 \text{ Marks})$

In a double pipe counter flow heat exchanger 10,000 kg/hr of an oil 15,K3,CO4 16. a) having a specific heat of 2095 J/kg-K is cooled from 80°C to 50°C by 8000 kg/hr of water entering at 25°C. Determine the heat exchanger area for an overall heat transfer co-efficient of 300 W / m^2 K. Take Cp for water as 4180 J/kg.K.

OR

b) Derive the LMTD for a counter flow heat exchanger stating the 15,K2,CO4 assumptions.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 11841

OR

13 K2.CO5

13,K2,CO3

6.K2.CO6

7,K2,CO6