						Reg	g. No.	0							
				Question	Paper Co	ode	1	1863]		13	J	UN '	2023
			B.E. / B.T	ech DEG	REE EXA	AMI	NATIO	NS. A	APRI	_ L/M	AY	202	23		
			21217 211		Fifth	Sem	ester								
					Civil E	ngine	ering								
		20C	EEL502 – E	NVIRONM	IENTAL .	AND	SOCL	AL II	MPA	CT A	ISS	ESN	ME	NT	
					(Regulat	tions	2020)								
	Dura	ation: 3 Hours Max. Mar											ks: 1	00	
				PAR	$\mathbf{T} - \mathbf{A} (10)$	× 2 =	= 20 Ma	arks)							
				1	AllSwel A		uestion	.5						М	arks,
	1	W/1-	-4 :- il.	f E:		I				PLAND				K-Le	wel, CC
1	1.	What are the types of ELA?												2, N 2 V	
	2. 2	Dia	tinguish boty	es of EIA?	import on	d Ind	iroot im	moot						2, K	2 cor
	з. Л	Dis	fine Terms of	reference (u mu	ineet iii	ipaci.						2,K	1.002
	т . 5	Suc	mest any fou	r mitigation	options fo	or noi	se nolli	ution						2,K	2 CO4
	5. 6	Wh	at are the ob	ectives of F	options it invironme	ntal l	Manage	ment	Plan	,				2,K	1 CO4
	0. 7	Wh	at is meant h	v Socio-eco	nomic ass	essm	ent?	mem	1 Iun	•				2,K	1,007
	8	Wh	at is mean by	y public con	sultation?	035111	ent.							2,K	1.CO5
	9	Me	ntion some o	f the enviro	nmental et	ffects	ofcon	struct	ing a	new	dan	n		2.K	1.006
	10.	Wh	at are the two) componen	ts of the I	ARE	Act?	ouraet	ing u		ciuii			2,K	1.CO6
				1											
				PAR	Answer A	× 13 =	= 65 Ma	arks)							
				1			uestion	.5							
	11.	a)	Explain the actions as p	groups of l er MoEF gu	Environme ide lines.	ental	impacts	s resu	lting	from	n pr	opos	sed	13,K	2,COI
		b)	Illustrate w	ith a flow occess.	diagram	the s	various	stage	es in	volve	ed i	n E	EIA	13,k	(2,COI
	12.	a)	Describe th of EIA.	e various m	nethodolog	gies c	commor	nly us	sed ir	the	pre	dicti	ion	13,K	(2,CO2
		b)	Summarize concepts in	the Basel EIA.	ine mon	R itorin	g, Pre	dictio	on ar	nd A	sse	ssm	ent	13,K	(2,CO2
	13.	a)	Discuss the	mitigation	neasures t	for sc R	oil and g	groun	d wat	er im	pac	ts.		13,K	(2,CO4
	K1 –	Reme	ember; K2 – Un	derstand; K3	– Apply; K4	– And	ılyze; K5	– Eva	luate;	K6 – (Crea	ite		118	63

ŝ.

.

1

- b) Describe in detail the environmental management plan for Air, Water 13,K2,CO4 and Land environment in the context of Thermal Power plant project.
- 14. a) Discuss in detail the conceptual framework for prediction and ^{13,K2,CO5} assessment of socio-economic impacts with a neat flow chart. OR
 - b) Explain in detail about the cost benefit analysis in EIA. *13,K2,C05*
- 15. a) Explain in detail about a case study related to a road construction 13,K2,CO6 project.

OR

b) Considering nuclear power plant as a case study explain the positive ^{13,K2,CO6} and negative impacts and suggest some mitigation measures.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Describe how the matrix method is used for the impact assessment of a ^{15,K2,CO3} mining project.

OR

b) Explain in detail on Mathematical models for Impact prediction. 15,K2,CO3

2