			1 !	5.	JU	N	20	23	
Reg. No.									

Question Paper Code

11888

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2023

Fifth Semester

Civil Engineering

20CEPC501 - FOUNDATION ENGINEERING

(Regulations 2020)

Duration: 3 Hours

Max. Marks: 100

PART - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions

1.	List the various types of boring.	K-Level, CO 2,K1,CO1
2.	Describe about standard penetration number.	2,K1,CO1
3.	Differentiate between local shear failure and general shear failure.	2,K2,CO2
4.	What are the assumptions made in Terzaghi's bearing capacity analysis?	2,K1,CO2
5.	Where can be the raft or mat foundation adopted?	2,K1,CO4
6.	State the requirement of a good foundation.	2,K1,CO4
7.	Define negative skin friction.	2,K1,CO5
8.	What are the general forms of deep foundation?	2,K1,CO5
9.	Summarize coefficient of earth pressure.	2,K2,CO6
10.	Enumerate the assumptions made in Rankine's theory.	2,K1,CO6

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) Illustrate with neat sketch about the geophysical method of soil 13,K1,CO1 exploration.

OR

- b) Discuss the various factors affecting quality of samples. Explain any 13,K2,CO1 two types of soil samplers with neat sketches.
- 12. a) A strip footing 2m wide carries a load intensity of 400 kN/m² at a depth of 1.2m in sand. The saturated unit weight of sand is 19.5 kN/m³ and unit weight above water table is 16.8 kN/m³. The shear strength parameters are C=0 and $\Phi = 35^{\circ}$. Determine the factor of safety with respect to shear failure for the following cases of location of water table:
 - (a) Water table is 4m below G.L.
 - (b) Water table is 1.2 m below G.L.

- (c) Water table is 2.5m below G.L.
- (d) Water table is 0.5 m below G.L. Water table is G.L itself.

OR

- b) A square footing for a column is 2.5mx2.5m and carries a load of 2000KN. Find the factor of safety against bearing capacity failure, if the soil has the following properties, C = 50KN/m. $\gamma = 17.6KN/m3$. Angle of internal friction = 15. N'c= 12.5, N'q = 4.5, N' $\gamma = 2.5$. The foundation is taken to a depth of 1.5m.
- 13. a) Briefly discuss about the various types of footing with neat sketch. 13,K2,CO4
 - b) Design a strap footing for the two columns of size 0.4 x 0.4 m ^{13,K3,CO4} carrying a load of 600 and 1000kN. The allowable soil pressure is 100 kN/m² Take eccentricity of the footing of column carrying 600KN as 1m. The columns are spaced at 6 m c/c.
- 14. a) Explain the following,
 - (i) Uplift capacity of pile

7,K2,CO5

(ii) Construction of under-reamed piles

6.K2.CO5

OR

- b) Design a friction pile group to carry a load of 3000 kN including the weight of the pile cap at a site where the soil is uniform clay to a depth of 20m,under lain by rock. Average unconfined compressive strength of the clay is 70kN/m². The clay may be assumed to be normal sensitivity and normally loaded, with liquid limit 60%. A factor of safety of 3 is required against shear failure.
- 15. a) Explain the procedure to determine the active earth pressure using Culmann's graphical methods.

Ol

b) A retaining wall with a smooth vertical back is 10m high and retains a two layer sand backfill with the following properties:

13,K3,C06

0 - 5 m depth: $\phi = 30^{\circ}$, $\gamma = 18 \text{ kN/m}^3$ Below 5 m: $\phi = 34^{\circ}$, $\gamma = 20 \text{ kN/m}^3$

Show the active earth pressure distribution assuming the water table is well below the base of wall.

PART - C $(1 \times 15 = 15 \text{ Marks})$

The load settlement curve data from a plate load test on a sandy soil areas under:

Load,t/m ²	10	20	30	40	50	60	70	80
Settlement,mm	4.5	10	15.5	22	29	38.5	50	64

The size of the plate used was 0.3mx0.3m. Find the size of the square column footing to carry an load of 250t with a maximum settlement of 25mm.

OR

b) Explain the plate load test to determine the bearing capacity of soil. 15,K2,CO3

15,K3,CO3