			15	j jiin	1 202	3
Re	g. No.					
C 1	11	003				

Question Paper Code

11892

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2023

Fifth Semester

Electronics and Instrumentation Engineering

(Common to Instrumentation and Control Engineering)

20EIPC503 - DIGITAL SIGNAL PROCESSING

(Regulations 2020)

Duration: 3 Hours

Max. Marks: 100

$PART - A (10 \times 2 = 20 Marks)$

Answer ALL Questions

1.	Write the Various classifications of Discrete-Time systems.	Marks, K-Level, CO 2,K1,CO1
2.	What is aliasing effect?	2,K1,CO1
3.	State the condition for a discrete time LTI system to be causal and stable.	2,K2,CO2
4.	State Initial and final value theorem of Z-transform.	2,K2,CO2
5.	State the difference between DFT and DTFT.	2,K2,CO3
6.	Calculate the number of multiplications needed in the calculation of DFT using FFT algorithm with 32-point sequence.	2,K2,CO3
7.	Distinguish between Butterworth and Chebyshev filters.	2,K2,CO4
8.	What is a Gibbs phenomenon?	2,K1,CO4
9.	Compare Von-Neumann and Harvard architecture	2,K2,CO5
10.	What is the role of pipelining in digital signal processors?	2,K1,CO5

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) Explain the classification of continuous time signals with its ^{13, K2,CO1} mathematical representation.

OR

- b) Examine in detail about the three-quantization error with relevant 13, K2,CO1 mathematical expressions.
- 12. a) State and prove any five properties of Z-transform.

13, K3,CO2

OR

b) Find the output of the system whose input-output is related by the $^{13, K3,CO2}$ difference equation: y(n)-(5/6)y(n-1)+(1/6)y(n-2)=x(n)-(1/2)x(n-1) for the step input.

13. a) Compute the DFT of $x(n) = \{1,2,3,4,4,3,2,1\}$ Using radix 2 DIF FFT 13, K3,CO3 algorithm.

OR

- b) Find the linear convolution of $x(n) = \{1,2,3,4,4,3,2,1\}$ $h(n) = \{-1,1\}$ using 13, K3,CO3 over lap -add method.
- 14. a) Design a filter with

13, K3,CO4

$$H_d\left(e^{j\omega}\right) = \begin{cases} e^{-j3\omega, & -\frac{\pi}{4} \le \omega \le \frac{\pi}{4} \\ 0, & otherwise \end{cases}$$

using a Hamming window with N=11.

OR

b) Design a chebyshev filter for the following specification using BLT

13, K3,CO4

$$0.707 \le |H(e^{j\omega})| \le 1, \qquad 0 \le \omega \le 0.2\pi$$

$$|H(e^{j\omega})| \le 0.1, \ 0.5\pi \le \omega \le \pi$$

15. a) Illustrate in detailed about architecture of digital signal processors with 13, K2,CO5 a neat diagram.

OR

b) What is Addressing mode and explain the types of Addressing modes 13, K2,CO5 of DSP processor.

PART - C
$$(1 \times 15 = 15 \text{ Marks})$$

16. a) Construct the direct form-I, direct form-II, cascade and parallel form 15,K3,CO4 realization for the system y(n) = -0.1 y (n-1) + 0.2 y (n-2) + 3 x (n) + 3.6 x (n-1) + 0.6 x (n-2).

OR

b) Find x(n) using the DIT algorithm. X(K)=(20,-5.828-j2.414, 0, -0.172-j0.414, 0, -0.172+j0.414, 0, -5.828+j2.414).

15, K3,CO3