

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2023

Sixth Semester
Civil Engineering
20CEPC603-STRUCTURAL ANALYSIS II
(Regulations 2020)
Duration: 3 Hours
Max. Marks: 100

$$
\text { PART - A }(10 \times 2=20 \text { Marks })
$$

Answer ALL Questions

Marks,

 K-Level, CO1. List the uses of Influence Lines.
2. Where do you get rolling loads in practice?
3. Define Absolute Maximum Bending moment. 2,K1,CO1

2,K2,CO1
2,K1,CO2
4. In a parallel chord truss, the force in a vertical member is a function of $2, \mathrm{Kl}, \mathrm{CO} 2$in the Panel?
5. State Muller Breslau's Principle.

2,KI,CO3
6. Draw influence lines (qualitative) for bending moment in middle support of a continuous beam having two equal parts.
7. Write the types of arches based on the number of hinges.
8. What is the degree of static indeterminacy of the fixed arch?
9. Classify the different types of mechanisms.
10. Define collapse load.

PART - B ($5 \times 13=65$ Marks $)$

Answer ALL Questions

11. a) Draw the ILD for shear force and bending moment for a section at 5 m from the left hand support of a simply supported beam, 20 m long. Hence, calculate the maximum bending moment and shear force at the section, due to a uniformly distributed rolling load of length 8 m and intensity $10 \mathrm{kN} / \mathrm{m}$ run.

OR

b) A girder having a span of 18 m is simply supported at the ends. It is traversed by a train of loads $100 \mathrm{kN}, 200 \mathrm{kN}, 100 \mathrm{kN}$ and 50 kN with 3 m , 2 m and 3 m spacing respectively and 50 kN load is leading. Find the maximum Bending moment (i) under 200 kN load and (ii) 50 kN load.
12. a) Draw ILD for forces in P, Q, R and S

OR
b) Explain step by step procedure in drawing the ILD for forces in $13, \mathrm{~K} 2, \mathrm{CO} 2$ members of a truss.
13. a) Draw the IL for reaction at B and for the support moment M_{A} at A for the propped cantilever AB of length 10 m . Compute the IL ordinates at every 1.5 m interval.

OR

b) Determine the influence line for R_{A} for the continuous beam $A B C$, roller at A and C with hinge support at B. Compute the IL at every $1 m$ interval. $\mathrm{AB}=\mathrm{BC}=5 \mathrm{~m}$.
14. a) A parabolic 3 hinged arch of span 20 m carries point load of 20 kN and

13,K3,CO3 30 kN at 3 m and 7 m from the left end and an udl of $25 \mathrm{kN} / \mathrm{m}$ over the right half of the span. Find the bending moment, normal thrust and radial shear at $\mathrm{D}, 5 \mathrm{~m}$ from A . What is the maximum bending moment? OR
b) A parabolic 3 hinged arch carries a UDL of $25 \mathrm{kN} / \mathrm{m}$ on the left half of

13,K3,CO4 the span. It has a span of 16 m and a central rise of 3 m . Determine the resultant reaction at supports. Find also the bending moment, normal thrust and radial shear at a section 4 m from left support.
15. a) Calculate the shape factor for a i) Rectangle section of breadth ' b ' and 13,K3,CO6 depth ' d ', ii) Diamond section of breadth ' b ' and depth ' d '.

OR

b) A continuous beam ABC is loaded as shown in the Fig. Examine the $13, K 3, C O 6$ required Mp if the load factor is 3.2 .

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create
11898

$$
\text { PART - C }(1 \times 15=15 \text { Marks })
$$

16. a) A suspension bridge of 250 m span has two numbers of three hinged $15, K 3, \operatorname{COS}$ stiffening girder supported by cables with a central dip of 25 m . If 4 point load of 300 kN each are placed at the centre line of the roadway at $20,30,40$ and 50 m from the left hand hinge, Estimate the shear force and bending moment in each girder at 62.5 m from each end. Estimate also the maximum tension in the cable.

OR
b) A three hinged stiffening girder of a suspension bridge of 100 m span $15, K 3, \operatorname{CO}$ subjected to two point loads 10 kN each placed at 20 m and 40 m , respectively from the left hand hinge. Determine the bending moment and shear force in the girder at section 30 m from each end. Also determine the maximum tension in the cable which has a central dip of 10 m .

