Re	g. No.			
Question Paper Code	119	980		

M.E. / M.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2023

First Semester

M.E. - Computer Science and Engineering 20PCSPC101 -- ADVANCED DATA STRUCTURES AND ALGORITHMS

(Regulations 2020)

Duration: 3 Hours

Max. Marks: 100

PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions

1.	How to measure the algorithm running time?	Marks, K-Level, CO 2,K2,CO1
2.	What is the typical growth rate of algorithm?	2,K1,CO1
3.	List the properties of red black tree.	2,K1,CO2
4.	What is the advantage over B+ tree when compared to B tree?	2,K2,CO2
5.	Give the structure for strongly connected graph.	2,K1,CO3
6.	How to calculate the efficiency of dijkstra's algorithm?	2,K2,CO3
7.	What do you means by dynamic programming?	2,K2,CO4
8.	State the elements of greedy strategy.	2,K1,CO4
9.	What is the need of polynomial time algorithm?	2,K1,CO5
10.	Define Reducibility.	2,K1,CO5

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11.	a)	(i) Describe in detail about Asymptotic Notation with an example.(ii) How to analyze the Algorithms?	7,K2,CO1 6,K3,CO1
	b)	What is recurrence? List the methods for solving recurrence. Describe the steps involved in substitution method to solve recurrence.	13,K2,CO1

12. a) (i) Illustrate insertion and deletion operation of Binary search tree with 10,K2,CO2 suitable example.

(ii) Compare binary search tree with B-Tree.

3,K2,CO2

OR

b) Show how to decrease the key of a node in a Fibonacci heap and how 13,K4,CO2 to delete any node from an n-node Fibonacci heap.

13.	a)	(i) Describe the basic concept of Bellman ford algorithm with an example.	7,K2,CO3			
		(ii) Write an algorithm to compute strongly connected components using DFS.	6,K3,CO3			
	OR					
	b)	(i) Explain the algorithm of Floyd's and Warshall's with a suitable example and mention its time complexity.	7,K3,CO3			
		(ii) How do you obtain Minimum spanning tree for a tree?	6,K4,CO3			
14.	a)	Write Short notes on the following,				
		(i) Matric chain multiplication.	7,K3,CO4			
		(ii) Longest common subsequence.	6,K3,CO4			
		OR				
	b)	(i) Discuss the general properties of Greedy method.	7,K2,CO4			
		(ii) Illustrate the construction of aActivity selection problem.	6,K3,CO4			

15. a) Prove that the circuit-satisfiability problem belongs to the class NP and 13,K4,CO5 also NP-Hard.

OR

b) Elaborate the following,
(i) NP Hard problem.

(ii) NP Complete problem.

7,K3,C05
6,K3,C05

PART - $C(1 \times 15 = 15 \text{ Marks})$

16. a) Explain the steps in Building the Huffman tree. Find the codes for the ^{15,K4,CO4} alphabets given below according to the frequency.

Character: A B C D E F G H I J K L M N O Frequency: 2 1 1 2 4 2 1 2 1 2 5 2 4 3 1

OR

b) Consider the following weighted graph,

15,K3,,CO3

Give the list of the MST in the order that prim's algorithm inserts them. Start prims algorithm from vertex A.