

Question Paper Code

12005

M.E. / M.Tech. - DEGREE EXAMINATIONS, APRIL/MAY 2023

Second Semester

M.E. - Power Electronics and Drives 20PPEEL209 - DISTRIBUTED GENERATION AND MICRO GRID

(Regulations 2020)

Duration: 3 Hours Max. Marks: 100

PART - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions

1.	State the advantages of conventional power generation.	Marks, K-Level, CO 2,K1,CO1
2.	What are fuel cells?	2,K1,CO1
3.	What are the different topologies used for distributed generation?	2,K1,CO2
4.	Write the short notes on captive power plant.	2,K1,CO2
5.	Define frequency limits in grid interconnection.	2,K1,CO3
6.	Describe the impact of grid interconnection on the reliability of the existing power system.	2,K2,CO3
7.	Identify two drivers for the adoption of micro grids.	2,K2,CO4
8.	Compare and contrast AC and DC micro grids.	2,K2,CO4
9.	What are the power quality issues that can arise in micro grids?	2,K2,CO5
10.	What are the advantages and disadvantages of grid-connected mode in micro grids?	2,K1,CO5

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) Explain the working principle of tidal energy and its applications. 13,K2,CO1

OR

- b) Discuss the need for non-conventional energy resources and their 13,K2,CO1 importance in the current scenario.
- 12. a) Discuss the different topologies used for distributed generation and 13,K2,CO2 their advantages and disadvantages.

OF

b) Discuss the IEEE 1547 standard and its role in interconnecting ^{13,K2,CO2} distributed resources to electric power systems. Explain the different requirements specified in the standard.

13. a) Explain the concept of transient stability and its relevance in grid 13,K2,C03 integration.

OR

- b) Discuss the measures taken to mitigate the effects of grid disturbances 13,K2,C03 on grid-connected systems.
- 14. a) Examine the potential risks associated with micro grids, including 13,K2,CO4 cyber security threats and grid isolation concerns.

OR

- b) Analyze the impact of micro grids on grid resilience, highlighting their 13,K2,CO4 ability to withstand and recover from disturbances.
- 15. a) Discuss the role of protection devices in micro grids and explain the 13,K2,C05 techniques used for fault detection and isolation.

OR

b) Explain the concept of demand response in micro grids and discuss its 13,K2,CO5 role in optimizing energy consumption and grid stability.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Discuss the different topologies used for distributed generation, their 15,K3,CO2 advantages, disadvantages, and applications.

OR

b) Conduct a case study analysis of a real-world micro grid 15,K3,CO4 implementation, highlighting the project objectives, challenges faced, and outcomes achieved.