

Question Paper Code

12012

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL/MAY 2023

Fourth Semester

Artificial Intelligence and Data Science 20BSMA404 - LINEAR ALGEBRA AND ITS APPLICATIONS

(Regulations 2020)

Duration: 3 Hours

Max. Marks: 100

$PART - A (10 \times 2 = 20 Marks)$

Answer ALL Questions

1.	Define linearly independent set vectors.	Marks, K-Level,CO 2,K1,CO1
2.	Write the vector $(2,-5,3)$ as a linear combination of the vectors $(1,-3,2)$, $(2,-4,-1)$ & $(1,-5,7)$.	2,K2,CO1
3.	Prove that in any vector space $a.0 = 0$ for each $a \in F$.	2,K1,CO2
4.	Define linearly independent vectors.	2,K1,CO2
5.	Examine the map T: $R \rightarrow R$ defined by $T(x) = x+3$, $x \in R$ is a linear transformation.	2,K1,CO3
6.	Define kernel of a linear transformation.	2,K1,CO3
7.	Prove that $\langle x, cy \rangle = \bar{c} \langle x, y \rangle$.	2,K1,CO4
8.	Let V be an inner product space, and suppose that x and y are orthogonal vectors in V. prove that $\ \mathbf{x} + \mathbf{y}\ ^2 = \ \mathbf{x}\ ^2 + \ \mathbf{y}\ ^2$.	2,K2,CO4
9.	Define Right singular Vector.	2,K2,CO5
10.	Why we use SVD and PCA in Data Science.	2,K2,CO5

PART - B $(5 \times 16 = 80 \text{ Marks})$

Answer ALL Questions

11. a)
(i) Find the value of a and b if the matrix
$$A = \begin{pmatrix} 2 & 1 & -1 & 3 \\ 1 & -1 & 2 & 4 \\ 7 & -1 & a & b \end{pmatrix}$$
 is of

rank 2.

(ii) Solve by LU Decomposition method

mposition method 8,K3,C01

$$3x_1 - 6x_2 - 3x_3 = -3$$

 $2x_1 + 6x_3 = -22$
 $-4x_1 + 7x_2 + 4x_3 = 3$

OR

	b)	(i) Solve by Cramer's rule	8,K3,CO1	
		10x + y - z = 12		
		2x + 10y - z = 13		
		2x + 2y - 10z = 14		
		(ii) Solve the system by Gauss Elimination Method	8,K3,CO1	
		$5x_1 + 3x_2 + 7x_3 = 4$		
		$3x_1 + 26x_2 + 2x_3 = 9$		
		$7x_1 + 2x_2 + 10x_3 = 5$		
12.	a)		16,K3,CO2	
		with respect to addition and scalar multiplication defined component		
		wise.		
		OR		
	b)	(i) Prove that the intersection of two subspaces of a vector space V is	8,K3,CO2	
		again a subspace of V.	0 K3 G03	
		(ii) Determine whether the set	8,K3,CO2	
		$W = \{(1,0,-1),(2,5,1),(0,-4,3)\} \subseteq R^3$ is a basis for R^3 .		
4.0			0 V2 CO2	
13.	a)	(i) Prove that there exists a linear transformation T: $R^2 \to R^3$ such	8,K3,CO3	
		that T $(1,1) = (1,0,2)$ and T $(2,3) = (1,-1,4)$. What is T $(8,11)$?	8,K3,CO3	
		(ii) Let V and W be vector spaces and T: $V \rightarrow W$ be linear. Then	0,83,003	
		prove that T is one-one if and only if $N(T) = \{0\}$.		
	1.1	OR	16,K3,CO3	
	b)	State and prove Dimension Theorem.	10,113,003	
			8,K3,CO4	
14.	a)		8,K3,CO4	
		(ii) Compute the least square solution of the equations		
		x+5y=3 $2x-2y=2$		
		-x + y = 5.		
		Also find the least square error.		
		This find the least square error.		
		OR		
	b)	(i) State and prove Gram-Scdmidth orthogonalization process.	8,K3,CO4	
		[1 1 1]		
		(ii) Determine the QR-Decomposition of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	8,K3,CO4	
		lo 1 2		
15.	a)	(i) Determine the matrix U, Σ , V such that $A=U\Sigma V^{T}$, where	8,K3,CO5	
		$A = \begin{bmatrix} 3 & 0 \\ A & 5 \end{bmatrix}$		
		(ii) Discuss the applications of Linear Algebra in Data Science.	8,K3,CO5	
		(II) Discuss the applications of Emeal Aigebra in Data Science.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
K1 -	Rem	ember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create	12012	
2				

- b) (i) Compute A^TA and AA^T , their eigen values and unit eigen vector v 8,K3,C05 and u for the rectangular matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and compute SVD of the matrix $A = U \Sigma V^T$.
 - (ii) Suppose A_0 has these two measurements of 5 samples. 8.K3,CO5 $A_0 = \begin{bmatrix} 1 & 0 & -1 & 1 & 2 & 3 \\ 0 & 1 & 0 & 3 & 2 & 1 \end{bmatrix}$ Compute the centred matrix A, sample covariance S, eigen values $\lambda_1 \lambda_2$, what is the line through the origin is closest to the 5 sample in the column of A.