Reg. No.		
----------	--	--

Question Paper Code

12017

17 JUL 2023

M.E. / M.Tech. - DEGREE EXAMINATIONS, APRIL/MAY 2023

Second Semester

M.E - Power Electronics and Drives

20PPEEL202 - SOFT COMPUTING TECHNIQUE

(Regulations 2020)

Duration: 3 Hours

Max. Marks: 100

PART - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions

Marks, K-Level, CO 2,K3,CO1

1. Calculate net input of the network shown including Bias input:

2.	What is Mcculloch pitts model?	2,K1,CO1
3.	Define hamming distance.	2, K1,CO2
	Mention applications of Hopfield net.	2, K1,CO2
	For the fuzzy relation R, find the λ cut relation for λ =0.7	2, K3,CO3

$$R = \begin{bmatrix} 0.2 & 0.5 & 0.7 & 1 & 0.9 \\ 0.3 & 0.5 & 0.7 & 1 & 0.8 \\ 0.4 & 0.6 & 0.8 & 0.9 & 0.4 \\ 0.9 & 1 & 0.8 & 0.6 & 0.4 \end{bmatrix}$$

6.	Define bounded difference of fuzzy set.	2, K1,CO3
7.	Compare genetic algorithms with traditional algorithms.	2, K2,CO4
8.	Explain single point crossover with one example.	2, K2,CO4
9.	Explain dispopt function in FIS.	2,K2,CO5
10.		2,K2,CO5

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) Explain the architecture of Madaline and write the step by step 13,K3,CO1 procedure for training the Madaline with necessary flowchart.

OR

b) Implement AND function and OR function using Perceptron networks ^{13,K3,CO1} for bipolar targets.

- 12. a) (i). Compare auto associative and hetroassociative memories. (ii) Explain the architecture and training algorithm of ART1. 7,K3,CO2
 - b) Explain the architecture of CPN and write the step by step procedure for 13,K3,CO2 training the CPN with necessary flowchart
- 13. a) Consider two fuzzy sets A={0.2/1+0.3/2 + 0.4/3 +0.5/4}

 B={0.1/1+0.2/2+0.2/3+1/4}

 Find the algebraic sum, algebraic product, bounded sum and bounded difference of the given fuzzy sets.
 - b) Two fuzzy relations are given by:

 13,K4,C03

$$\mathcal{E} = \begin{bmatrix} y_1 & y_2 & z_1 & z_2 & z_3 \\ x_1 & 0.6 & 0.3 \\ 0.2 & 0.9 \end{bmatrix} \quad \text{and} \quad \mathcal{S} = \begin{bmatrix} y_1 & 1 & 0.5 & 0.3 \\ y_2 & 0.8 & 0.4 & 0.7 \end{bmatrix}$$

Obtain T as composition of R and S in both Max-Min composition and Max-Product composition.

- 14. a) Explain the working of Genetic programming with necessary flow 13,K3,C04 chart.
 - b) What is meant by reproduction? Explain in detail about Roulette- 13,K3,CO4 Wheel selection and random selection.
- Explain the Genetic Neuro Hybrid Systems with appropriate block 13,K3,C05 diagrams.
 - b) Explain in detail about Fuzzy inference and fuzzy logic controller. 13,K3,C05

PART - C $(1 \times 15 = 15 \text{ Marks})$

- 16. a) (i)Using GA approach solve the problem of maximizing the function 7,K4,C04 f(x)=x² where x is permitted to vary between 0 to 31.
 - (ii) Explain how ANN, fuzzy logic and GA can be combined for 8,K3,C05 certain applications.
 - b) (i) Using the GA process, minimize the function $f(x) = x^2 + 5x$. Assume 8,K4,CO4 the necessary operators for the process.
 - (ii) Explain the adaptive neuro fuzzy inference system in MATLAB. 7,K3,CO5