\square

Question Paper Code 12034

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2023

Fourth Semester

Civil Engineering

20CEPC402 - STRENGTH OF MATERIALS - II
(Regulations 2020)

PART - A ($10 \times 2=20$ Marks $)$

Answer ALL Questions

| 1. State Maxwell's reciprocal theorem. | Marks,
 K-Level, CO
 2.Kll |
| :--- | :--- | :--- |
| 2. Write the formula to calculate the strain energy due to bending under Point | |

PART - B ($5 \times 13=65$ Marks $)$
 Answer ALL Questions

11. a) A weight of 10 KN falls by 30 mm on a collar rigidly attached to a

13,K2,COI vertical bar 4 m long and $1000 \mathrm{~mm}^{2}$ in section. Find the instantaneous stress of the bar. Take $\mathrm{E}=210 \mathrm{GPa}$.

OR

b) An axial pull of 40 KN is suddenly applied to steel rod 2 m long and $1000 \mathrm{~mm}^{2}$ in cross section. Calculate the strain energy that can be absorbed if $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$.
12. a) A cantilever of length L carries a concentrated load W at the end span

13,K2,CO3 if the free end is supported on a rigid prop, find the reaction at the prop. Also draw shear force and bending moment diagrams.

OR

K1-Remember; K2 - Understand; K3-Apply; K4-Analyze; K5 - Evaluate; K6 - Create
b) A beam $A B C D 16 \mathrm{~m}$ long is continuous over three spans; $A B=6 \mathrm{~m}$, $\mathrm{BC}=6 \mathrm{~m}$ and $\mathrm{CD}=6 \mathrm{~m}$, the supports being at the same level. There is a uniformly distributed load of $20 \mathrm{kN} / \mathrm{m}$ over BC . On AB , there is a point load of 80 kN at 2 m from A . On CD there is a point load of 60 kN at 3 m from D. Calculate the moments and reactions at the supports using theorem of three moments.
13. a) (i) What are the assumptions made in Euler"s Column theory?
(ii) Derive the Euler"s crippling load for a column with one end fixed and the other end free.

OR

b) Determine the maximum and minimum hoop stress across the section of pipe of 400 mm internal diameter and 100 mm thick, the pipe contains a fluid at a pressure of $8 \mathrm{~N} / \mathrm{mm}^{2}$. Also sketch the radial pressure distribution and hoop stress distribution across the section.
14. a) In a steel member, at a point the major principal stress is $200 \mathrm{MN} / \mathrm{m}^{2}$ and the minor principal stress is compressive. If the tensile yield point of the steel is $235 \mathrm{MN} / \mathrm{m}^{2}$, find the value of the minor principal stress at which yielding will commence, according to each of the following criteria of failure
i) Maximum shearing stress.
ii) Maximum total strain energy and
iii) Maximum shear strain energy.

Take Poisson Ratio $=0.26$.

OR

b) Determine the principal stresses and direction cosines of principal stresses and maximum shear stress for the following 3D-stress field.
$\sigma=\left[\begin{array}{ccc}110 & 60 & 0 \\ 60 & -86 & 0 \\ 0 & 0 & 55\end{array}\right] \mathrm{MPa}$
15. a) A curved beam of rectangular cross section is subjected to pure bending with a moment of $400 \mathrm{~N}-\mathrm{m}$. The beam has width of 20 mm , depth of 40 mm and is curved in plane to the depth. The mean radius of curvature is 5 mm . Determine the position of neutral axis and the ratio of maximum to the minimum stress. Also, plot the variation of the bending stress across the section.

OR
b) Determine the principal moments of inertia for an unequal section 60 $\mathrm{mm} \times 60 \mathrm{~mm} \times 8 \mathrm{~mm}$.

KI - Remember; K2 - Understand; K3-Apply; K4 - Analyze; K5 - Evaluate; K6 - Create
16. a) Using the virtual work method, determine the vertical deflection at

15,K2,CO2 joint D of the truss shown in Figure below. Take $\mathrm{E}=200 \mathrm{GPa}$ and $\mathrm{A}=5 \mathrm{~cm}^{2}$.

OR
b) A beam of length 8 m is loaded with a single concentrated load of $100 \quad 15, \mathrm{~K} 2, \mathrm{CO} 2$ kN at a distance of 4 m from the left end. Using Castigliano's theorem, obtain the deflection under the concentrated load. $\mathrm{EI}=2.2 \mathrm{MNm}^{2}$.

