TTD.				-			
	0	10		10	4	0	
	e	υ.	- 60	1.			
**	W	-		A		v	•

Question Paper Code

e 12034

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2023

Fourth Semester

Civil Engineering

20CEPC402 - STRENGTH OF MATERIALS - II

(Regulations 2020)

Duration: 3 Hours

Max. Marks: 100

PART - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions

1.	State Maxwell's reciprocal theorem.	Marks, K-Level, C(2,K1,CO1
2.	Write the formula to calculate the strain energy due to bending under Point load.	2, K2 ,CO1
3.	What are the advantages and limitations of theorem of three moments?	2,K2,CO3
4.	What is shear force and bending moment?	2,K2,CO3
5.	What is slenderness ratio (buckling factor)?	2,K1,CO4
6.	State the assumptions made in Lame's theory.	2,K1,CO4
7.	Give the expressions for Maximum and Minimum Principal stresses on a plane.	2,K1,CO5
8.	What are the three stress invariants?	2,K2,CO5
9.	Differentiate between symmetrical and unsymmetrical bending.	2,K2,CO6
10.	When is Winkler-Bach theory used?	2.K2.CO6

PART - B (5 × 13 = 65 Marks) Answer ALL Questions

- a) A weight of 10 KN falls by 30 mm on a collar rigidly attached to a ^{13,K2,C01} vertical bar 4m long and 1000 mm² in section. Find the instantaneous stress of the bar. Take E = 210 GPa.
 OR
 - b) An axial pull of 40 KN is suddenly applied to steel rod 2m long ^{13,K2,CO1} and 1000 mm² in cross section .Calculate the strain energy that can be absorbed if $E = 200 \text{ GN/m}^2$.
- 12. a) A cantilever of length L carries a concentrated load W at the end span ^{13,K2,CO3} if the free end is supported on a rigid prop, find the reaction at the prop. Also draw shear force and bending moment diagrams.

OR

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12034

- b) A beam ABCD 16 m long is continuous over three spans; AB = 6 m, 13,K2,CO3 BC = 6m and CD = 6m, the supports being at the same level. There is a uniformly distributed load of 20 kN/m over BC. On AB, there is a point load of 80 kN at 2 m from A. On CD there is a point load of 60 kN at 3m from D. Calculate the moments and reactions at the supports using theorem of three moments.
- (i) What are the assumptions made in Euler's Column theory? 13. a)

3.K2.CO4

(ii) Derive the Euler's crippling load for a column with one end fixed 10,K2,CO4 and the other end free.

OR

- Determine the maximum and minimum hoop stress across the section 13.K2,CO4 b) of pipe of 400 mm internal diameter and 100 mm thick, the pipe contains a fluid at a pressure of 8 N/mm². Also sketch the radial pressure distribution and hoop stress distribution across the section.
- In a steel member, at a point the major principal stress is 200 MN/m² 13,K2.COS 14. a) and the minor principal stress is compressive. If the tensile yield point of the steel is 235 MN/m², find the value of the minor principal stress at which yielding will commence, according to each of the following criteria of failure
 - Maximum shearing stress. i)
 - ii) Maximum total strain energy and
 - iii) Maximum shear strain energy.

Take Poisson Ratio = 0.26.

OR

b) Determine the principal stresses and direction cosines of principal 13,K2,CO5 stresses and maximum shear stress for the following 3D- stress field.

110 60 $\sigma = \begin{bmatrix} 60 & -86 & 0 \\ 0 & 0 & 55 \end{bmatrix}$ MPa

15. a) A curved beam of rectangular cross section is subjected to pure 13,K2,CO6 bending with a moment of 400 N-m. The beam has width of 20 mm. depth of 40 mm and is curved in plane to the depth. The mean radius of curvature is 5 mm. Determine the position of neutral axis and the ratio of maximum to the minimum stress. Also, plot the variation of the bending stress across the section.

OR

b) Determine the principal moments of inertia for an unequal section 60 13,K2,CO6 mm x 60 mm x 8 mm.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

2

12034

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Using the virtual work method, determine the vertical deflection at 15,K2,CO2 shown in Figure joint D of the truss below. Take E=200GPa and A=5 cm².

b) A beam of length 8m is loaded with a single concentrated load of 100 15,K2,CO2 kN at a distance of 4m from the left end. Using Castigliano's theorem, obtain the deflection under the concentrated load. $EI = 2.2 MNm^2$.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12034

3