

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL/MAY 2023

Fourth Semester
Electrical and Electronics Engineering 20EEPC402 - TRANSMISSION AND DISTRIBUTION
(Regulations 2020)
Duration: 3 Hours
Max. Marks: 100
PART - A ($10 \times 2=20$ Marks $)$
Answer ALL Questions

1. Why skin effect is absent in de system?	$\begin{gathered} \text { Marks, } \\ \text { K-Level, } \mathrm{CO} \\ \text { 2,KI,COI } \end{gathered}$
2. What is meant by transposition of line conductors?	2,K1,CO1
3. Mention the limitations of end condenser method.	2, $\mathrm{Kl}, \mathrm{CO} 2$
4. Distinguish between short, medium and long transmission line.	2,K2,CO2
5. Define String efficiency.	2,K1,CO3
6. Enumerate the different types of insulators used for overhead transmission lines.	2,K2,CO3
7. What are the methods of grading of cables?	2,Kl,CO4
8. What is the function of sheath in cables?	2,K1,C04
9. List out the basic types of FACTS Controllers.	2,K1,CO5
10. Why transmission lines are 3 phase 3 wire circuits while distribution lines are 3 phase 4 wire circuits?	2,K2,CO5

$$
\begin{gathered}
\text { PART - B }(5 \times 13=65 \text { Marks }) \\
\text { Answer ALL Questions }
\end{gathered}
$$

11. a) A 50 km long transmission line supplies a load of 5 MVA at 0.8 power $13, \mathrm{~K} 2, \mathrm{CO} /$ factor lagging at 33 kV . The efficiency of transmission is 90%. Calculate the volume of aluminium conductor required for the line when 3 -phase, 3 wire systems is used. The specific resistance of Aluminium is $2.85 \times 10^{-8} \Omega \mathrm{~m}$.

OR

b) Derive an expression for the capacitance between conductors of a $13, \mathrm{~K} 2, \mathrm{CO} 1$ single phase overhead line.
12. a) Derive the expression of regulation and efficiency for medium lines using nominal-T method.

OR

b) A 3 phase, $50 \mathrm{~Hz}, 100 \mathrm{~km}$ transmission line has the following constant:

13,K2,CO2
Resistance/phase/km=0.153 , Inductance/phase $/ \mathrm{km}=1.21 \mathrm{mH}$, Capacitance/phase $/ \mathrm{km}=0.00958 \mu \mathrm{~F}$. If the line supplies a load of 20 MW at 0.9 p.f. lagging at 110 kV at the receiving end, calculate
(i) Sending end current, (ii) Sending end power factor, (iii) Regulation, (iv) Transmission efficiency.

K1 - Remember; K2 - Understand; K3 - Apply; K4-Analyze; K5 - Evaluate; K6 - Create
15. a) A 3 unit string is fitted with a guard ring. The capacitance of a link pin

13,K2,CO3 to metal work and guard ring can be assumed to be 15% and 5% of the capacitance of each unit. Determine the voltage distribution and string efficiency.

OR

b) Discuss briefly on the following :-
(i) Pin type insulator.
(ii) List the effect of Wind and ice loading in sag calculations.
14. a) A 33 kV single core cable has a conductor diameter of 1 cm and a sheath of inside diameter 4 cm . Find the maximum and minimum stress in the insulation.

OR
b) (i) What are the advantages of underground cables over overhead lines?
(ii) List out the properties of insulating materials used for the cables.

7,K2,CO4
6,K2,CO4
15. a) Explain the following.
(i) Indoor substations.
(ii) Interconnected system Distribution.

OR
b) An electric train taking a constant current of 600 A moves on a section of line between two substations 8 km and maintained at 575 and 590 volts respectively. The track resistance is $0.4 \Omega / \mathrm{km}$ both goes and returns. Find the point of minimum potential along the track and currents supplied by two substations at that instant.

$$
\text { PART }-\mathrm{C}(1 \times 15=15 \text { Marks })
$$

16. a) Determine the inductance of a 1 -phase transmission line having the following arrangement of conductors. One circuit consists of three wires of 2 mm dia each and the other circuit two wires of 4 mm dia each as shown in fig.

OR
b) Calculate the horizontal component of tension and maximum sag for a span of 300 m if the maximum tension in the conductor is 3500 kg and weight of the conductor is $700 \mathrm{~kg} / \mathrm{km}$. Determine also the location of the points on the conductor at which the sag will be half of the above value.

