Re	g.	N	0.
			~ •

Question Paper Code

12086

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2023

Third Semester

Electronics and Instrumentation Engineering

(Common to Instrumentation and Control Engineering)

20EIPC301 - ELECTRICAL AND ELECTRONIC MEASUREMENTS

(Regulations 2020)

Duration: 3 Hours

Max. Marks: 100

Marks

PART-A (10 × 2 = 20 Marks) Answer ALL Questions

1.	Name the types of instruments used for making voltmeter and ammeter.	K-Level, CO 2,K1,CO1
2.	What are the sources of errors in ac bridge measurements?	2,K1,CO1
3.	Write the special features to be incorporated for LPF wattmeter.	2,K1,CO2
4.	Name the constructional parts of induction type energy meter.	2,K2,CO2
5.	What is the standardization of potentiometer?	2,K2,CO3
6.	Define Instrument Transformer.	· 2,K1,CO3
7.	What are the applications of function generators?	2,K2,CO4
8.	State the advantages of digital voltmeters.	2,K1,CO4
9.	Write the characteristics of Data Logger.	2,K1,CO5
10.	What are the applications of storage oscilloscope?	2,K1,CO5

PART - B (5 × 13 = 65 Marks) Answer ALL Questions

11. a) How the range of DC ammeter and DC voltmeter can be extended. ^{13,K2,CO1} Derive the expression to find the shunt resistance and multiplier resistance?

OR

- b) Explain how a Maxwell bridge can be used for measuring an unknown ^{13,K2,CO1} inductance.
- 12. a) Explain the construction and theory of a single-phase induction type ^{13,K2,CO2} energy meter. Show that number of revolutions in time t is proportional to energy supplied.

OR

b) With a neat diagram explain the construction and working of ^{13,K2,CO2} electrodynamometer type wattmeter.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12086

13. a) Explain the working principle of AC potentiometer. State the *13,K2,C03* applications of AC potentiometer.

OR

- b) Draw the equivalent circuit and phasor diagram of a current ^{13,K2,CO3} transformer. Derive the expression for ratio and phase angle errors.
- 14. a) Draw the circuit diagram and explain the working of a heterodyne type ^{13,K2,CO4} wave analyzer.

OR

13,K2,CO4

15. a) Draw the block diagram of a general purpose oscilloscope (CRO) and ^{13,K2,CO5} explain function of each block in detail.

OR

Describe with diagram the operation of a digital LCR meter.

b)

b) Explain the theory of LCD displays. Compare LCD displays with LED 13.K2.C displays.

PART - C (1 × 15 = 15 Marks)

16. a) Explain with labeled sketches the working of function generator with 15, K2, CO4 the help of labeled block diagram.

OR

- b) A moving coil instrument gives full scale deflection of 24 mA. When *15,K2,CO1* P.D. across it is 72 mV. Determine the value of:
 - (i) Series resistance for full scale deflection of 600 V.
 - (ii) Find the power consumption in meter.