Reg. No						
	12140	344	Ald	OH (E)	141	08/2023

Ouestion Paper Code

12140

Marks,

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2023

First Semester

Computer Science and Business Systems 20BSMA102 - DISCRETE MATHEMATICS

(Regulations2020)

Duration: 3 Hours

Max. Marks: 100

PART-A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions

1	0	struct the truth table for $(P \to Q) \land (Q \to P)$.	K-Level, CO 2,K2,CO1
1.			2,K1,CO1
2.		e the negation of the statement $(\exists x)(\forall y)P(x,y)$.	2,K1,CO2
3.		e the Pigeonhole principle.	2,K2,CO2
4.	Find	the recurrence relation of the sequence $s(n)=a^n, n \ge 1$.	2,K1,CO3
5.	State	e any two laws of Boolean algebra.	2,K1,CO3
6.	How	many cells does a K- map in three variables have?	2,K1,CO4
7.		w many edges are there in a graph with 10 vertices each of Degree 3?	2,K1,CO4
8.	Defi	ne Hamiltonian path.	2,K2,CO5
9.		ve that identity element in a group is unique.	2,K1,CO5
10.	Defi	ine Kernel of homomorphism.	2,11,003
		PART - B ($5 \times 16 = 80$ Marks) Answer ALL Questions	
11	a)	(i) Show that	8,K2,CO1
11.	a)	$((P \lor Q) \land \neg(\neg P \land (\neg Q \lor \neg R))) \lor (\neg P \land \neg Q) \lor (\neg P \land \neg R) \text{ is a tautology}$	•
		(ii) $(P \vee Q) \wedge (\neg P \wedge (\neg P \wedge Q)) \Leftrightarrow (\neg P \wedge Q)$ using equivalence formula	
		OR	
	b)	Show that the following premises are inconsistent.	16,K3,CO1
		1. If Jack misses many classes through illness, then he fails high school.	1
		2. If Jack fails high school, he is uneducated	
		3. If Jack reads a lot of books, then he is not uneducated.4. Jack misses many classes through illness and reads a lot of books.	
12.	a)	(i) Using induction principles prove that n^3+2n is divisible by 3.	8,K3,CO2
		(ii) Using mathematical induction prove that $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$	8,K3,CO2
		OR	
			1 (1/2 (10)

b) Solve
$$S(k) - 7S(k-1) + 10S(k-2) = 8k+6$$
, for $k \ge 2$, $S(0) = 1$, $S(1) = 2$.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

16,K3,CO2

(i) In Boolean algebra, show that the following are equivalent. For any 12,K3,CO3 13. a) a and b, (A) a + b = b (B) $a \cdot b = a$ (C) a' + b = 1 (D) $a \cdot b' = 0$ (E) $a \le b$.

> (ii) In a Boolean Algebra. Show that (a+b')(b+c')(c+a')=(a'+b)(b'+c)(c'+a)

4,K2,CO3

b) Find the minimal expansion as a sum of products of each of the 16,K3,CO3 following Boolean functions using K- map:

$$(i) f(x, y) = x y + x \overline{y}$$

$$(ii) f(x, y) = \overline{x} y + \overline{x} y$$

$$(iii) f(x, y) = \overline{x} y z + \overline{x} \overline{y} \overline{z}$$

$$(iv) f(x, y, z) = \overline{x} y z + \overline{x} \overline{y} z$$

$$(v) f(x, y, z) = \overline{x} y \overline{z} + \overline{x} \overline{y} \overline{z} + x \overline{y} \overline{z} + x y z + x \overline{y} z$$

(i) State and Prove Handshaking Theorem 14. a)

4,K2,CO4

(ii) Examine whether the following pair of graphs are isomorphic Or not .Justify your answer.

12,K2,CO4

16,K3,CO4

- Given an example of a graph which is
 - Eulerian but not Hamiltonian (i) Hamiltonian but not Eulerian
 - (ii) Both Eulerian and Hamiltonian
 - (iii) Non Eulerian and not Hamiltonian (iv)

(i) State and prove Lagrange's theorem. 15.

8, K2, CO5

(ii) Show that the set of positive rational numbers Q^+ is an abelian 8,K2,CO5group for the operation * defined by $a*b = \frac{ab}{3}$.

OR

- b) Let (G,*), and $(G_1,*)$ be two groups and let $f:G\to G_1$ be a group 16,K2,CO5 homomorphism from G to G₁. Prove that
 - (a) $f(e) = e_1$ where e and e_1 are the identities of (G, *) and $(G_1, *)$ respectively.
 - (b) $f(a) = [f(a)]^{-1}$ for any $a \in G$.