Reg. No.

Question Paper Code	21309

M.E. / M.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022
 First Semester
 M.E. - CAD/CAM
 20PCDMA101 - OPTIMIZATION TECHNIQUES IN DESIGN

(Regulations 2020)
Duration: 3 Hours
Max. Marks: 100
PART - A ($10 \times 2=20$ Marks $)$
Answer ALL Questions
Marks, K-Level,CO 2, K2, COI

1. Explain the principles of optimization and write its elements.
2. Explain unconstraint minimization problem and write few methods for 2,K2,COI solving it.
3. Explain geometric interpretation of the reduced gradient.

2, $\mathrm{K} 2, \mathrm{CO} 2$
4. Define Multi stage optimization.

2,K1,CO2
5. Explain why are the components numbered in reverse order in dynamic

2,K2,CO3 Programming.
6. Explain about a neural network.
7. Define longitudinal load. Give any two examples.
8. List the various stresses induced in shaft.
9. Define dynamics.
10. Explain about mechanism.

$$
\text { PART - B }(5 \times 13=65 \text { Marks })
$$

Answer ALL Questions
11. a) Find the minimum of $f=\lambda^{5}-5 \lambda^{3}-20 \lambda+5$ by the cubic $13, K 3, \mathrm{COI}$ interpolation method.

OR

b) Prove that a convex function is unimodal.

13, K3,CO1
12. a) Solve the following LP problem by Dynamic Programming:

13,K3,CO2
Maximize $f\left(x_{1}, x_{2}\right)=10 x_{1}+8 x_{2}$
Subject to

$$
\begin{gathered}
2 x_{1}+x_{2} \leq 25 \\
3 x_{1}+2 x_{2} \leq 45 \\
x_{2} \leq 10
\end{gathered}
$$

And

$$
x_{1} \geq 0, \quad x_{2} \geq 0
$$

b) Explain in detail the relation between the sequential quadratic $13, \mathrm{~K}, \mathrm{CO} 2$ programming method and the Lagrangian function

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create
13. a) Two discrete fuzzy sets, A and B are defined as follows:
$\mathrm{A}=\{(60,0.1)(62,0.5)(64,0.7)(66,0.9)(68,1.0)(70,0.8)\}$
$\mathrm{B}=\{(60,0.0)(62,0.2)(64,0.4)(66,0.8)(68,0.9)(70,1.0)\}$
Determine the union and intersection of these sets

OR

b) Find the minimum of the following function using simulated annealing: $\mathrm{f}(\mathrm{X})=6 x_{1}^{2}+2 x_{2}^{2}-x_{1}-2 x_{2}-6 x_{1} x_{2}$. Assume suitable parameters and show detailed calculations for 2 iterations.
14. a) Figure below shows two frictionless rigid bodies (carts) A and B connected by three linear elastic springs having spring constants $\mathrm{k} 1, \mathrm{k} 2$ and k 3 . The springs are at their natural positions when the applied force P is zero. Find the optimal solution of displacements $x 1$ and $x 2$ under the force P by using the principle of minimum potential energy.

OR

b) (i) State the relation for efficiency of a screw jack and identify the contributing factors. Also find the optimal value of each factor.
(ii) During the design of structural members, safety is more important

8,K3,CO4 than optimization. Comment.
15. a) Formulate an optimization problem and Find the link lengths of the

13,K3, CO5 four-bar linkage for minimum structural error.

OR

b) Write about vibration absorbers and the need of optimization in their design.

$$
\text { PART - C }(1 \times 15=15 \text { Marks })
$$

16. a) Minimize the function

$$
f(\lambda)=0.65-\frac{0.75}{1+\lambda^{2}}-0.65 \lambda \tan ^{-1} \frac{1}{\lambda}
$$

Using the Golden Section method with $\mathrm{n}=6$. Formulate the optimization problem and suggest the suitable solution techniques.

OR

b) Find the minimum of the function

$$
f(\lambda)=0.65-\frac{0.75}{1+\lambda^{2}}-0.65 \lambda \tan ^{-1} \frac{1}{\lambda}
$$

by Newton Raphson method with the string point $\lambda_{1}=0.1$

