	Reg. No.	
	Question Paper Code 21309	
	M.E. / M.Tech DEGREE EXAMINATIONS, NOV/DEC 2022	
	First Semester	
	M.E CAD/CAM	
	20PCDMA101 - OPTIMIZATION TECHNIQUES IN DESIGN	
	(Regulations 2020)	
Dura	ation: 3 Hours Max. Marks	: 100
	$PART - A (10 \times 2 = 20 Marks)$	
	Answer ALL Questions	
5		Marks, K-Level,CO 2,K2,CO1
2.	Explain unconstraint minimization problem and write its elements. Explain unconstraint minimization problem and write few methods for solving it.	2,K2,CO1
3.	Explain geometric interpretation of the reduced gradient.	2,K2,CO2
4.	Define Multi stage optimization.	2,K1,CO2
5.	Explain why are the components numbered in reverse order in dynamic	2,K2,CO3
	Programming.	2 82 602
6.	Explain about a neural network.	2,K2,CO3 2,K1,CO4
7.	Define longitudinal load. Give any two examples.	2,K1,CO4
8.	List the various stresses induced in shaft.	2,K1,CO5
9. 10.	Define dynamics. Explain about mechanism.	2,K2,CO5
10.		
	PART - B (5 × 13 = 65 Marks)	
	Answer ALL Questions	
11.	a) Find the minimum of $f = \lambda^5 - 5\lambda^3 - 20\lambda + 5$ by the cubic	13,K3,CO1
	interpolation method.	
	OR	12 12 001
	b) Prove that a convex function is unimodal.	13,K3,CO1
12.	a) Solve the following LP problem by Dynamic Programming:	13,K3,CO2
12.	Maximize $f(x_1, x_2) = 10x_1 + 8x_2$	
	Subject to $2x_1 + x_2 \le 25$	
	$3x_1 + 2x_2 \leq 45$	
	$x_2 \leq 10$	
	And	

 $\begin{array}{cc} x_1 \geq 0 \,, & x_2 \geq 0 \\ \text{OR} \end{array}$

b) Explain in detail the relation between the sequential quadratic ^{13,K2,CO2} programming method and the Lagrangian function

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create **21309** 1

13.K3,CO3

- Two discrete fuzzy sets, A and B are defined as follows: 13. a) $A = \{(60, 0.1), (62, 0.5), (64, 0.7), (66, 0.9), (68, 1.0), (70, 0.8)\}$ $B = \{ (60, 0.0) (62, 0.2) (64, 0.4) (66, 0.8) (68, 0.9) (70, 1.0) \}$ Determine the union and intersection of these sets
 - OR
 - Find the minimum of the following function using simulated 13,K3,CO3 b) annealing: f (X) = $6x_1^2 + 2x_2^2 - x_1 - 2x_2 - 6x_1x_2$. Assume suitable parameters and show detailed calculations for 2 iterations.
- 14. a) Figure below shows two frictionless rigid bodies (carts) A and B 13,K3,CO4 connected by three linear elastic springs having spring constants k1, k2 and k3. The springs are at their natural positions when the applied force P is zero. Find the optimal solution of displacements x1 and x2 under the force P by using the principle of minimum potential energy.

- 8,K3,CO4 b) (i) State the relation for efficiency of a screw jack and identify the contributing factors. Also find the optimal value of each factor. (ii) During the design of structural members, safety is more important 5,K3,CO4 than optimization. Comment.
- 13,K3,CO5 Formulate an optimization problem and Find the link lengths of the 15. a) four-bar linkage for minimum structural error.

OR

b) Write about vibration absorbers and the need of optimization in their 13,K2,CO5 design.

PART - C $(1 \times 15 = 15 \text{ Marks})$

Minimize the function 16. a)

f

b)

 $f(\lambda) = 0.65 - \frac{0.75}{1+\lambda^2} - 0.65 \lambda \tan^{-1} \frac{1}{\lambda}$ Using the Golden Section method with n = 6. Formulate the optimization problem and suggest the suitable solution techniques.

 $1\frac{1}{\lambda}$

15,K3,CO1

15,K3,CO1

Find the minimum of the function

$$f(\lambda) = 0.65 - \frac{0.75}{1+\lambda^2} - 0.65\lambda$$

$$(\lambda) = 0.65 - \frac{0.75}{1 + \lambda^2} - 0.65 \ \lambda \ tan^{-1}$$

by Newton Raphson method with the string point $\lambda_1 = 0.1$

21309 K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create