			Reg. No.										
		Question Paper Cod	le	21313									
	M.E. / M.	Fech DEGREE EX	AMINAT	ION	S, N	ov	/D	EC	20	22			
			emester										
		M.E Power Elec	tronics an	nd Di	rives	5							
	20PPEPC	C104 - ANALYSIS AN	ND DESIG	GN C	FI	NVI	ER	TE	RS				
		(Regulation	ons 2020)										
D	uration: 3 Hours						N	Ma	x. N	1arl	KS: 1	00	
		PART - A (10 > Answer AL			()								
	What is the need	d for voltage control			elim	nina	tio	n i	n si	ngl		Mar K-Leve 2,K1,0	el,CO
	phase inverter?									J			
•	Define Total Har	monic distortion.										2,K1,0	
•	Define Space vec	ctor Modulation techni	ques.									2,K1,0	
•	Explain how the	output voltage of three	e phase inv	verter	is c	ontr	oll	ed.				2,K12	CO2
•	List the advantag	es and disadvantages of	of ACSI.									2,K1,0	СОЗ
	Compare VSI and	d CSI.										2,K1,0	СОЗ
	List the different	types of Multilevel in	verter.									2,K1,	<i>CO</i> 4
	What is back to b	back intertie system?										2,K1,	<i>CO</i> 4
	What is the dead	zone of a resonant inv	erter?									2,K1,	<i>C05</i>
0.		sifications of resonant										2,K1,	

2 3

5 6

7 8 9

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) Explain the operation of a single phase full bridge inverter with the ^{13,K4,C01} help of waveforms.

OR

- b) Explain various voltage control method in single phase inverter using ^{13,K4,CO1} PWM techniques with necessary diagram and waveform.
- 12. a) Explain the working of 180 degree conduction mode operation of three ^{13,K4,CO2} phase inverter with star connected load with a neat circuit diagram and waveforms.

OR

b) Describe the Space vector modulation used to control the output ^{13,K2,CO2} voltage of three phase inverter with a neat sketch.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 21313

13. a) Describe elaborately about the auto sequential CSI with relevant 13,K4.CO3 diagrams and waveforms.

OR

- b) With a neat sketch explain the six step thyristor inverter with neat 13.K4.CO3 waveforms.
- 14. a) Describe the operation of diode-clamped multilevel inverter with neat 13,K4,CO4 diagram.

OR

- b) Describe the operation of cascaded multilevel inverter with neat 13,K4,CO4 diagram.
- 15. a) Describe the operation of Class E resonant inverter with neat wave 13,K4 (1)5 forms.

OR

b) With neat diagram describe the operation of DC-link Resonant 13,K4,C05 inverter.

$PART - C (1 \times 15 = 15 Marks)$

- 16. a) The series resonant inverter has $L_1=L_2=L=50\mu$ H, $C=6\mu$ F, $R=2\Omega$. The 15,K5,C05 DC input voltage is $V_s=220$ V and the frequency of the output voltage is $f_0=7$ kHz. The turn off time of thyristors is $t_q=10\mu$ s. Determine
 - a) The Circuit Turn-Off time t_{off}
 - b) The Maximum Permissible frequency fmax
 - c) The Peak-Peak capacitor voltage V_{pp}
 - d) The Peak load current I_p
 - e) Sketch the instantaneous load current i_o(t),Capacitor Voltage V_c(t) and DC supply current I_s
 - f) The RMS load current I_0
 - g) The output power P_0
 - h) The average supply current I_s

OR

b) Describe the operation of Flying capacitor multilevel inverter with 15.K4.C04 neat a sketch.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 21313

2