TO BT	0.00
Kog No	
NC2. 110.	
0	1

Question Paper Code

21321

M.E. / M.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022

First Semester

M.E. - Communication Systems

20PCOPC101 - ADVANCED RADIATION SYSTEMS

(Regulations 2020)

Duration: 3 Hours

Max. Marks: 100

PART - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions

1.	State Huygen's principle.	<i>K-Level, CO</i> 2,K1,CO2
2.	List the merits and demerits of offset feed reflector antenna.	2,K1,CO2
3.	Differentiate FNBW and HPBW.	2,K1,CO3
4.	The phased array called as the scanning array. Prove the statement using suitable formula.	2,K2,CO3
5.	Describe the radiation mechanism of microstrip dipole antenna.	2,K1,CO4
6.	List the applications of microstrip array antenna.	2,K1,CO4
7.	List the antenna configurations used in base stations.	2,K1,CO5
8.	State the suitable location of antenna on a regular passenger car.	2,K1,CO5
9.	Outline the features of an anechoic chamber and mention its uses.	2,K2,CO6
10.	Demonstrate the instruments required to accomplish an antenna measurement task.	2,K1,CO6

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) Describe in detail the field equivalence principle and derive radiation 13,K1,CO2 equations for aperture antenna.

OR

- b) Derive the electric and magnetic field equations for a rectangular ^{13,K1,CO2} aperture on an infinite ground plane.
- 12. a) Derive the expression for antenna array factor for a N-element array. *13,K1,C03* Explain its significance.

OR

b) Derive the parameters of broadside array, end fire array and Hansen – 13,K1,C03 Woodyard array and compare the expressions obtained.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 21321

13.	a)	Using suitable diagram and equations, explain the design procedure involved in the Microstrip array and feed network design.	13,K1,CO4
	b)	Derive and explain the rectangular patch antenna in transmission line model.	13,K1,CO4
14.	a)	(i) Analyze the Principles and requirements of UWB antenna and discuss its characterization parameters.	6,K1,CO5
		(ii) Interpret the features of Vivaldi antenna. OR	7,K1,CO5
	b)	Discuss the operation and applications of antenna	6 KI CO5
		(i) PIFA antenna (ii) Automobile entennes	7 K1 CO5
		(II) Automobile antennas.	7,81,005
15		Accord the notive of charaching metarial and the surpluin that	13 42 006
13.	a)	Explain the design aspect of anechoic chamber OR	15,K2,CO0
	b)	(i) With neat diagrams, explain how transmitter and receiver antenna factors are measured.	7,K1,CO6
		(ii) Discuss the issues related to EMC in detail.	6,K1,CO6
		PART - C (1 × 15 = 15 Marks)	
16.	a)	(i) The normalized radiation intensity of an antenna is represented by U=Cos ² θ Cos ² (3 θ), ($0 \le \theta \le 90^{\circ}$, $0 \le \emptyset \le 360^{\circ}$). Find the half- power beam width and first-null beam width in radians and degrees.	8,K2,CO1
		(ii) The radial component of the radiated power density of an antenna is given by $W_{rad}=a_rA_0\sin\theta/r^2$ W/m ² , find the maximum directivity of the antenna. Write an expression for the directivity as a function of the directional angles and \emptyset . OR	7,K2,COI
	b)	(i) The radiation intensity of an antenna is given by $U(\theta, \emptyset) = B_0 \sin\theta \sin^2 \emptyset$, $0 \le \theta \le \pi$, $0 \le \emptyset \le \pi$, and 0 elsewhere.	10,K1,CO1
		(ii) Determine the maximum directivity using numerical techniques. Compare it with the exact value.	5,K2,CO1
K1	Reme	mber; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create	21321