Reg. No.

Question Paper Code21322

M.E. / M.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022

First Semester

M.E. - Computer Science and Engineering

(Common to M.E. - Computer Science and Engineering (With Specialisation in Networks))

20PCSPC101 - ADVANCED DATA STRUCTURES AND ALGORITHMS

(Regulations 2020)

Duration: 3 Hours

Max. Marks: 100

$PART - A (10 \times 2 = 20 Marks)$

Answer ALL Questions

1.	Define Recursion.	Marks, K-Level, CO 2,K1,CO1
2.	Define the best, worst, average case time Complexity.	2,K1,CO1
3.	List the applications of trees.	2,K1,CO2
4.	Define Red Black tree.	2,K1,CO2
5.	What is an Adjacency List?	2,K1,CO3
6.	Define minimum spanning tree. Give an example?	2,K1,CO3
7.	Define graph and its types.	2,K1,CO4
8.	Define Single source Shortest path algorithm.	2,K1,CO4
9.	What is principle difference between dynamic programming and divide and Conquer techniques?	2,K1,CO5
10.	State the general principles of greedy algorithm	2,K1,CO5

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11.	a)	Explain Big O, Omega and Theta notation with examples.	13, K2,CO1				
	OR						
	b)	Explain in detail the various methods for solving recurrence.	13, K2,CO1				
12.	a)	Explain in detail about the various operations associated with B Trees.	13, K2,CO2				
		OR					
	b)	Explain in detail Fibonacci heap with example.	13, K2,CO2				
13.	a)	(i) Discuss the Depth first Search algorithm with example.	7, K2,CO3				
		(ii) Discuss an algorithm for Breadth first Search on a graph.	6,K2,CO3				
<u>K1</u> –	Reme	ember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create	21322				

b)	What is topological sort? Write an algorithm to perform topological sort.	13, K2,CO3
a)	Explain the working of Prims Algorithm in detail.	13, K2,CO4
	OR	
b)	Discuss in detail the Dijkstra's Shortest path Algorithm and its efficiency.	13, K2,CO4
a)	Explain how Matrix – chain Multiplication problem can be solved using dynamic programming with suitable example. OR	13, K2,CO5
b)	Describe greedy algorithm with an example.	13, K2,CO5
	PART - C (1 × 15 = 15 Marks)	
a)	Illustrate the P, NP and NP completeness with suitable examples. OR	15,K3,CO6

b) Summarize on deterministic and non-deterministic algorithms. *15,K3,C06*

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 21322 2

OR

14.

15.

16.