	Reg. No.	
	Question Paper Code21330	
	M.E. / M.Tech DEGREE EXAMINATIONS, NOV/DEC 2022 First Semester	
	M.E Computer Science and Engineering	
(Common to M.E Computer Science and Engineering (with specialization in Netw	orks))
	20PCSMA104 - APPLIED PROBABILITY AND STATISTICS	
D	(Regulations 2020) Max Mark	s: 100
-	PART - A $(10 \times 2 = 20 \text{ Marks})$	3. 100
	Answer ALL Questions	
1.	A continuous random variable X has a density function $f(x) = k(1+x)$,	Marks, K-Level, CO 2,K1,CO1
2	2 < x < 5. Find the value of k. The first 2 moments about 3 are 1 and 8 Find the mean and variance	2 K2 COL
3.	The two regression lines are $4x - 5y + 33 = 0$, $20x - 9y = 107$. Find the	2,K2,CO2
	mean of x and y.	
4.	The joint pdf of (X,Y) is given by $f(x, y) = e^{-(x+y)}, 0 \le x, y < \infty$. Find the marginal density function of X.	2,K2,CO2
5.	Mention the properties of a good estimator.	2,K2,CO3
6.	Define point estimate.	2,K2,CO3
7.	Define Type-I error and Type-II error.	2,K2,CO4
8.	A standard sample of 200 tins of coconut oil gave an average weight of 4.95 kg with a standard deviation of 0.21 kg. Do we accept that the net weight is 5 kg per tip at 5% level of significance?	2,K2,CO4
9.	Define random vector.	2,K2,CO5
10.	Define Principal component analysis.	2,K2,CO5
	PART - B (5 × 16 = 80 Marks) Answer ALL Questions	
11.	a) A discrete RV X has the probability function given below $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16, K3,CO1
	b) (i) Find the Moment generating function of Binomial distribution and hence find its mean and variance.	8,K2,CO1
	(ii) State and Prove memoryless property of Exponential distribution.	8,K2,CO1

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 21330

a) From the following data, Find (i)The two regression equations (ii) The 16,K3,CO2 coefficient of correlation between marks in Mathematics and marks in Statistics (iii) The most likely marks in Statistics when marks in Mathematics are 30.

	1.0	10		•1	_ 50	152	51	50	55	39
Marksin Statistics	43	46	49	41	36	32	31	30	33	30
Marks in Maths	25	28	35	32	31	36	29	38	34	32

b) If the joint pdf of a two – dimensional RV (X,Y) is given by f(x, y) = K(6-x-y); 0 < x < 2, 2 < y < 4

= 0, elsewhere

find (i) the value of K, (ii) P(X < 1, Y < 3) (iii) P(X + Y < 3)(iv) P(X < 1/Y < 3)

13. a) Fit a straight line trend of the form y = a + bx to the data given below 16, K3, CO3 by the method of least squares and predict the value of y when x = 70

X	71	68	73	69	67	65	66	67	
у	69	72	70	70	68	67	68	64	

OR

- 14. a) Given the following table for hair colour and eye colour, find the value 16, K3, CO4 of Chi-square. Is there good association between hair colour and eye colour.

		Hair c	olour	12 Marshall	
		Fair	Brown	Black	Total
	Blue	15	5	20	40
Eye	Grey	20	10	20	50
colour	Brown	25	15	20	60
	Total	60	30	60	150
		OR			The second second

b) The nicotine content in milligram of two samples of tobacco were *16, K3,CO4* found to be as follows, test the significant difference between means of the two samples.

Sample I	21	24	25	26	27	1.0.2
Sample II	22	27	28	30	31	36

15. a) Compute the principal component to the covariance matrix

- 7	(1	4)	
2 =	4	100	

OR

16, K2,CO5

16, K3, CO5

16,K3,CO2

16, K3,CO3

b) Explain Multivariate Analysis.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 21330