Reg. No.

Question Paper Code	21330

M.E. / M.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022

First Semester
M.E. - Computer Science and Engineering
(Common to M.E. - Computer Science and Engineering (with specialization in Networks)) 20PCSMA104 - APPLIED PROBABILITY AND STATISTICS
(Regulations 2020)
Duration: 3 Hours
Max. Marks: 100

> PART - A $(10 \times 2=20$ Marks $)$
> Answer ALL Questions

Marks, K-Level, CO 2.K1,COI

2,K2,COI
2. The first 2 moments about 3 are 1 and 8 . Find the mean and variance.

2,K2,CO2

2,K2,CO2
4. The joint pdf of (X, Y) is given by $f(x, y)=e^{-(x+y)}, 0 \leq x, y<\infty$. Find the marginal density function of X.
5. Mention the properties of a good estimator.

2,K2,CO3
6. Define point estimate.

2,K2,CO3
7. Define Type-I error and Type-II error.

2,K2,CO4
8. A standard sample of 200 tins of coconut oil gave an average weight of 2,K2,CO4 4.95 kg with a standard deviation of 0.21 kg . Do we accept that the net weight is 5 kg per tin at 5% level of significance?
9. Define random vector.

2,K2,CO5
10. Define Principal component analysis.

2,K2,CO5

$$
\begin{gathered}
\text { PART }-\mathbf{B}(\mathbf{5} \times \mathbf{1 6}=\mathbf{8 0} \text { Marks) } \\
\text { Answer ALL Questions }
\end{gathered}
$$

11. a) A discrete RV X has the probability function given below
$16, \mathrm{~K} 3, \mathrm{COI}$

X	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{x})$	0	a	2 a	2 a	3 a	a^{2}	$2 \mathrm{a}^{2}$	$7 \mathrm{a}^{2}+\mathrm{a}$

Find (i) Value of a (ii) $\mathrm{p}(\mathrm{X}<6), \mathrm{P}(\mathrm{X} \geq 6), \mathrm{P}(0<\mathrm{X}<4)$
(iii) Distribution function.

OR

b) (i) Find the Moment generating function of Binomial distribution and $8, \mathrm{~K} 2, \mathrm{COl}$ hence find its mean and variance.
(ii) State and Prove memoryless property of Exponential distribution. 8,K2,COI

K1 - Remember; K2 - Understand; K3 - Apply; K4-Analyze; K5-Evaluate; K6 - Create
12. a) From the following data, Find (i)The two regression equations (ii) The coefficient of correlation between marks in Mathematics and marks in Statistics (iii) The most likely marks in Statistics when marks in
Mathematics are 30.

Marks in Maths	25	28	35	32	31	36	29	38	34	32
Marksin Statistics	43	46	49	41	36	32	31	30	33	39

OR
b) If the joint pdf of a two - dimensional $\mathrm{RV}(\mathrm{X}, \mathrm{Y})$ is given by

$$
\begin{aligned}
f(x, y) & =K(6-x-y) ; 0<x<2,2<y<4 \\
& =0, \text { elsewhere }
\end{aligned}
$$

find (i) the value of K, (ii) $P(X<1, Y<3)$ (iii) $P(X+Y<3)$
(iv) $P(X<1 / Y<3)$
13. a) Fit a straight line trend of the form $y=a+b x$ to the data given below

16, K3, CO3 by the method of least squares and predict the value of y when $x=70$

x	71	68	73	69	67	65	66	67
y	69	72	70	70	68	67	68	64

OR

b) Fit a parabola of second degree to the following data.

16, K3,CO3

X	0	1	2	3	4
Y	1	5	10	22	38

14. a) Given the following table for hair colour and eye colour, find the value $16, \mathrm{~K} 3, \mathrm{CO} 4$ of Chi-square. Is there good association between hair colour and eye colour.

Hair colour						
Eye		Fair	Brown	Black	Total	
	Blue	15	5	20	40	
	Grey	20	10	20	50	
	Brown	25	15	20	60	
	Total	60	30	60	150	
OR						

b) The nicotine content in milligram of two samples of tobacco were 16, K3, CO4 found to be as follows, test the significant difference between means of the two samples.

Sample I	21	24	25	26	27	-
Sample II	22	27	28	30	31	36

15. a) Compute the principal component to the covariance matrix

16, K3, CO5

$$
\Sigma=\left(\begin{array}{cc}
1 & 4 \\
4 & 100
\end{array}\right)
$$

OR

$16, K 2, \mathrm{CO} 5$
b) Explain Multivariate Analysis.

