

Reg. No.

21347

M.E. / M.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022

First Semester

Question Paper Code

M.E. - Computer Science and Engineering

(Common to M.E. - Computer Science and Engineering (with specialization in Networks))

20PCSPW101 - ADVANCED MACHINE LEARNING WITH LABORATORY

(Regulations 2020)

Duration: 3 Hours		Max. Marks: 100	
	PART - A $(10 \times 2 = 20 \text{ Marks})$		
1.	Answer ALL Questions List the important objectives of machine learning.	Marks, K-Level, C 2,K2,CO1	
2.	Differentiate Simple and Linear Regression.	2, K2,CO	
3.	Give description about Radial Basis Functions.	2 ,K2,CO2	
4.	Define sampling and its types.	2 ,K1,CO	
5.	State the principles of Decision Trees.	2 ,K2,CO.	
6.	Elaborate the term CART in Machine Learning.	2 ,K2,CO.	
7.	List the applications of Genetic Algorithms.	2 ,K2,CO	
8.	Discuss about how PCA differs from LDA.	2 ,K2,CO4	
9.	Define Vector Quantization.	2 ,K1,CO.	
10.	Discuss about the K-nearest neighbor algorithm.	2 ,K2,CO.	
	$\mathbf{D} \mathbf{A} \mathbf{D} \mathbf{T} = \mathbf{D} \left(5 \times 12 - 65 \mathbf{M} \mathbf{o} \mathbf{r} \mathbf{k} \mathbf{s} \right)$		

 $PART - B (5 \times 13 = 65 Marks)$

Answer ALL Questions

Explain how Concept learning can be viewed as a Search problem with 13,K2,CO1 11. a) the help of General to specific ordering of Hypotheses. OR 7,K2,CO1 b) (i) Discuss the Limitations of Find-S algorithm. 6,K2,CO1 (ii) List the differences between Candidate Elimination algorithm and Find-S algorithm. 6,K2,CO2 (i) List the differences between Marcov Chain and Monte carlo 12. a) models. (ii) Explain how Monte Carlo Marcov Chain model used in Bayesian 7,K2,CO2 Statistics. OR

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 21347

b)	Explain how Support Vector Machines are used in Classif	fication and 13, K2, CO.	2
	Regression Analysis.		

13. a) Illustrate Decision tree Algorithm with an Example. *13,K3,CO3*

OR

- b) Discuss in detail on how different types of classifiers are combined in ^{13,K3,CO3} different ways.
- 14. a) (i) Write a short note on Hidden Markov Model. 6,K3,CO4
 - (ii) Write Brief notes on Evolutionary Algorithms. 7,K3,CO4 OR
 - b) Explain in detail Principal Component Analysis for Dimension ^{13,K2,C04} Reduction.
- 15. a) Demonstrate the Candidate-Elimination algorithm to output a ^{13,K3,CO5} description of the set of all hypotheses consistent with the training examples.

OR

b) Explain Back Propagation concept in detail with the help of Artificial ^{13,K2,CO5} Neural Network with suitable training data set.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Define Bayes Theorem. Illustrate the steps in building a Bayesian ^{15,K3,CO6} classifier with suitable examples.

OR

b) Apply k-Means algorithm to cluster a set of data stored in a .CSV file ^{15,K3,CO6} and comment on the quality of clustering.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 21347

2